On Augmented Designs
Author(s): W. T. Federer and D. Raghavarao
Published by: International Biometric Society
Stable URL: http://www.jstor.org/stable/2529707
Accessed: 16/05/2011 09:32

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=ibs.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
ON AUGMENTED DESIGNS

W. T. Federer and D. Raghavarao

Biometrics Unit, Cornell University, Ithaca, NY 14853, U.S.A.

SUMMARY

When some treatments (checks) are replicated \(r \) times and other treatments (new treatments) are replicated less than \(r \) times, an augmented design may be used. These designs may be minimum variance designs for estimating contrasts of check effects, of new variety effects, of new variety versus checks, or of all check and new varieties simultaneously. In this paper optimal augmented block and optimal augmented row-column designs for estimating certain contrasts of new treatments are presented.

1. INTRODUCTION

When new varieties or strains are developed in a plant improvement program, sufficient material is often not available for planting more than one experimental plot or unit of the new variety at a single location; in some cases, it may be undesirable to lay out more than one experimental unit for the treatment under consideration. In some plant breeding investigations even though one plot of a new variety is laid out at a single location, the new variety may be planted at a number of locations, with the standard or check varieties being replicated \(r \) times at each location. Federer [1956, 1960, 1961, 1963, 1972], Steel [1958], and Searle [1965] introduced a class of designs, called augmented designs, to handle this situation. Note that the class of augmented designs contains reinforced, staircase, and other designs.

Augmented experiment designs may be constructed to possess the variance-optimality property; this optimality of the dispersion matrix of estimable treatment contrasts may be

(i) among new variety yields,

(ii) among check variety yields,

(iii) between check and new variety yields, or

(iv) among all check and new varieties simultaneously.

In this paper we concentrate on one-way and two-way elimination of heterogeneity designs which minimize the variance of certain contrasts of the new varieties. The designs are in the class of augmented designs.

2. AUGMENTED DESIGNS—GENERAL THEORY

Suppose that \(v^* \) new varieties are to be tested and that sufficient seeds or plants are available to plant only single replicates of each variety. Furthermore, suppose that \(v \) other varieties, called standard or check varieties, are available in such quantities that \(r \) replications of each variety may be planted. The \(v + v^* \) varieties included in a particular experi-

\[\text{\footnotesize{This work was partially supported under an NIH Research Grant No. 5-RO1-GM-05900.}} \]

\[\text{\footnotesize{On leave from Punjab Agricultural University (India).}} \]
ment are then laid out in an appropriate experiment design for controlling the heterogeneity effects in the experimental area. Sufficient replications of the check varieties are included to have sufficient degrees of freedom for estimating the experimental error variance and for estimating the effects of the varieties and of the effects of the blocking used to control the heterogeneity.

The statistical analysis for experiment designs in which \(v \) check varieties have been replicated \(r \) times (or even \(r_i \) times for treatment \(i \)) and in which \(v^* \) new varieties have been replicated once, may be carried out in the following two ways:

(a) The trial on \(v + v^* \) varieties may be analyzed using standard methods for disproportionate numbers in the subclasses; then, contrasts among the check varieties, among the new varieties, and among the checks and new varieties may be made.

(b) A statistical analysis is performed on the check variety yields only, and blocking effects, a general mean effect, and check variety effects are estimated; an estimate of the experimental error variance is obtained. Then, the estimated new variety means or effects are obtained and the varietal contrasts are made as in (a).

Though methods (a) and (b) might appear to result in different estimators for the effects and experimental error variance, it can be shown that this is not the case. Let \(y \) be an \(n \times 1 \) observational vector with

\[
\begin{align*}
E(y) & = X_{11} \beta \\
V(y) & = \sigma^2 I_n
\end{align*}
\]

where \(E(\cdot) \) and \(V(\cdot) \) denote the expected value and the dispersion matrix, respectively, of the quantity inside the parentheses; \(I_n \) is the identity matrix of order \(n \); \(\beta \) is a \(p \times 1 \) column vector of unknown parameters, \(\sigma^2 \) is an unknown scalar, and \(X_{11} \) is an \(n \times p \) matrix with known coefficients. Let \(z \) be another \(m \times 1 \) observational vector with

\[
\begin{align*}
E(z) & = X_{21} \beta + X_{22} \gamma \\
V(z) & = \sigma^2 I_m
\end{align*}
\]

where \(\gamma \) is a \(q \times 1 \) column vector of another set of parameters and \(X_{21} \) and \(X_{22} \) are \(m \times p \) and \(m \times q \) matrices, respectively, of known coefficients. We assume that \(m = q \) and that the rank of \(X_{22} \) is equal to \(q \).

Then \(\gamma \) can be estimated either by estimating \(\beta \) from (2.1) and substituting in (2.2), which is method (b), or by using the combined set of equations in (2.1) and (2.2) to estimate the varietal effects, which is method (a). By the method of least squares, the estimated vector \(\hat{\beta}^{(1)} \) of \(\beta \) from (2.1) is:

\[
\hat{\beta}^{(1)} = (X_{11}'X_{11})^{-1}X_{11}'y
\]

where \((X_{11}'X_{11})^{-1} \) denotes a generalized inverse of \(X_{11}'X_{11} \) (see e.g. Searle [1971]). Substituting the value \(\hat{\beta}^{(1)} \) for \(\beta \) in (2.2), we obtain the estimate \(\hat{\gamma}^{(1)} \) of \(\gamma \) as follows:

\[
\hat{\gamma}^{(1)} = X_{22}^{-1}[z - X_{21}(X_{11}'X_{11})^{-1}X_{11}'y]
\]

Alternatively, from the combined set of equations (2.1) and (2.2), that is,

\[
\begin{bmatrix}
X_{11} & 0_{n,q} & \beta \\
X_{21} & X_{22} & \gamma
\end{bmatrix}
\]

where \(0_{n,q} \) is the \(n \times q \) null matrix, the estimate \((\hat{\gamma}^{(2)}, \hat{\gamma}^{(1)}) \) of \((\gamma^T \gamma)^T \) is obtained by the method of least squares described below. Now,
ON AUGMENTED DESIGNS

\[
\begin{bmatrix}
X_{11}'X_{11} + X_{21}'X_{21} & X_{21}'X_{22} \\
X_{22}'X_{21} & X_{22}'X_{22}
\end{bmatrix} \begin{bmatrix}
\hat{\beta}^{(2)} \\
\hat{\gamma}^{(2)}
\end{bmatrix} = \begin{bmatrix}
X_{11}'y + X_{21}'z \\
X_{22}'z
\end{bmatrix}.
\]

Since the rank of X_{22} is q, there exists a $q \times p$ matrix L such that

\[X_{21} = X_{22}L.\]

After substituting this value in (2.6) and eliminating $\hat{\beta}^{(2)}$, we obtain $\hat{\gamma}^{(2)} = \hat{\gamma}^{(1)}$. Further, $\hat{\beta}^{(2)} = \hat{\beta}^{(1)}$. Thus, methods (a) and (b), as described previously, lead to the same estimates of the varietal effects for both check and new varieties.

The error mean squares from both methods can also be easily verified to be the same. The inferences drawn from both methods are thus identical whenever the new treatments are replicated exactly once. It is recommended that method (b) be used for the statistical analyses as it minimizes the algebra and the computations. Use of experiment designs with known statistical analyses further minimizes the algebraic and the numerical computations.

The randomization procedure (Federer [1956, 1961]) is to follow the prescribed procedure for the known design for the check varieties; then the new varieties are randomly allotted to the remaining empty experimental units. An example will suffice to clarify the procedure further. Suppose that $v = 4$ check varieties (A, B, C, D) and $v^* = 7$ new varieties ($1, 2, 3, 4, 5, 6, 7$) are to be laid out in an augmented balanced incomplete block design. Following the randomization procedure for the check varieties in a balanced incomplete block design for $v = 4, b = 6, r = 4, k = 2$, and $\lambda = 1$, the experimental plan might be as follows:

<table>
<thead>
<tr>
<th>block number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
</tbody>
</table>

There are seven empty experimental units in the above layout. Now, randomly assign the numbers 1 to 7 to the new varieties and fill in the seven empty experimental units in numerical order. The result is the plan used for the experiment.

3. AUGMENTED DESIGNS ELIMINATING HETEROGENEITY IN ONE DIRECTION

Before proceeding to a discussion of augmented designs with one-way elimination of heterogeneity, the concept of a linked block design is needed. These designs are defined (cf. Youden [1951]) as follows: A linked block (LB) design is an arrangement of v treatments in b blocks each of size k, such that

(i) every treatment occurs at most once in a block,
(ii) every treatment occurs in r blocks, and
(iii) every pair of blocks has exactly μ varieties in common.
The constants v, k, r, b, and μ are called the parameters of the linked block design. For further details, the reader is referred to the paper by Roy and Laha [1956].

Augmented designs eliminating heterogeneity in one direction are called augmented block designs. Since interest lies in estimating the block effects, and consequently the new variety effects, from that portion of the experiment on the check varieties, it would be desirable to select augmented block designs which are connected and which satisfy one or more optimality criteria (e.g. see Kiefer [1958]) for estimating block effects. The randomized complete block design and the incomplete block designs for which the variances of differences of block effects are all equal, that is the block effects are variance-balanced (also pairwise or combinatorially balanced in this case), (e.g. see Raghavarao [1971]), are such designs for which one or more of the optimality criteria hold. Thus in augmented block designs, one may prefer to use a randomized block design or a linked block design for the check varieties.

3.1. Augmented block design when check varieties are in a randomized complete block design.

Let the v check varieties be randomly allotted to the experimental units within each of the r blocks which are complete for the check varieties, and let the yield of the ith check variety in the jth block be $y_{i,j}$. Let the v^* new varieties be randomly arranged such that the l_i new varieties occur in the jth block, let $\sum_{i,j} l_i = v^*$, and let $z_{i,j}$ be the yield of the ith new variety in the jth block in which it occurs. Let us, for simplicity, assume that the block effects are nonrandom effects. Note that for the $z_{i,j}$ yields, $j = 1, 2, \ldots, r$ and $i = 1, 2, \ldots, v^*$. Using the check variety yields alone, run the statistical analysis for a randomized complete block design, and let EMS be the estimated error mean square obtained from this analysis. Then for any pair of those new varieties, say i and i', occurring together in the same block, the difference in their effects is estimated by $z_{i,j} - z_{i',j}$ with a standard error of $\sqrt{2EMS}$; the difference between two new varieties, i and i', occurring in blocks j and j', respectively, is estimated by $z_{i,j} - z_{i',j} - (\bar{y}_{i,j} - \bar{y}_{i',j})$ with a standard error of $\sqrt{2(v+1)EMS/\nu}$, where $\bar{y}_{i,j}$ is the mean of the ith block computed on check variety yields only.

3.2 Augmented block design when the check varieties are in a linked block design.

Let the v check varieties be arranged in an LB design with parameters v, b, r, k, and μ and let $y_{i,j}$ be the yield of the ith check variety in the jth block for $i = 1, 2, \ldots, v$ and $j = 1, 2, \ldots, b$. Let B_i be the ith block total, let T_i be the ith check variety total, and let G be the total of the $vr = bk$ check variety yields. Let P_i be the difference between the block total $Y_{i,j}$ and $1/r$ times the sum of the totals of treatments appearing in the jth block. Let the analysis be carried on the check variety yields and let EMS be the error mean square.

Let v^* new varieties be arranged such that l_i of them occur in the ith incomplete block, and $\sum_{i,j} l_i = v^*$. Let $z_{i,j}$ be the yield of the ith new variety in the jth block. For nonrandom block effects the difference between the ith and i'th new varieties in the jth block is estimated by $z_{i,j} - z_{i',j}$ with a standard error of $\sqrt{2EMS}$; the difference between the ith and the i'th new varieties appearing in block j and j', respectively, ($j \neq j'$) is estimated as $z_{i,j} - z_{i',j} - r(P_i - P_{i'})/\mu b$ with a standard error of $\sqrt{2(r + \mu b)EMS/\mu b}$.

4. AUGMENTED DESIGNS ELIMINATING HETEROGENEITY IN TWO DIRECTIONS

A Youden design as originated by Youden [1937] may be defined in the following manner. A Youden design is an arrangement of v symbols in a $k \times v$ rectangular array such that exactly one of the symbols appears in the vk cells and

(i) every symbol appears in each of the k rows,
(ii) every symbol occurs at most once in a column,
(iii) every symbol occurs in exactly r columns, and
(iv) every pair of symbols occurs together in exactly λ columns.

$v = b$, $k = r$, and λ are called the parameters of the Youden design. These designs are used to remove heterogeneity from two directions or sources; their variance optimality for estimating the v treatment effects has been determined by Kiefer [1958]. Since treatments and columns are orthogonal to rows and since the columns and treatments form a symmetrical BIB design, the Youden design is also variance optimal for estimating the column effects.

From a Youden design we may interchange the roles of the k rows and the v treatments to obtain a $v \times v$ square array where the k check varieties are each replicated v times. $v^* = v(v - k)$ new varieties are included in the remaining empty cells. To illustrate, take the Youden design with parameters $v = 7 = b$, $k = 3 = r$, and $\lambda = 1$ given below:

<table>
<thead>
<tr>
<th>row</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Interchange the roles of the rows and the treatments to obtain the following 7×7 square for $k = 3$ check varieties (A, B, C):

<table>
<thead>
<tr>
<th>row</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>C</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The 49 - 21 = 28 empty cells of the above plan may be filled with 28 new varieties 1, 2, \cdots, 28 each with one replicate as follows:

<table>
<thead>
<tr>
<th>row</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>C</td>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>A</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>C</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>B</td>
<td>A</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>13</td>
<td>B</td>
<td>A</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>17</td>
<td>C</td>
<td>18</td>
<td>B</td>
<td>A</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>21</td>
<td>22</td>
<td>C</td>
<td>23</td>
<td>B</td>
<td>A</td>
<td>24</td>
</tr>
<tr>
<td>7</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>C</td>
<td>28</td>
<td>B</td>
<td>A</td>
</tr>
</tbody>
</table>

Let \(y_{hi} \) be the yield of the \(i \)th check variety in the \(h \)th row and \(j \)th column, and let \(z_{hi} \) be the yield of the \(i \)th new variety in the \(h \)th row and \(j \)th column. Let \(y_{..} \), be the \(h \)th row total from check variety yields, \(y_{..j} \) be the \(j \)th column total from check variety yields, \(y_{...} \) be the \(i \)th check variety total yield, \(y_{...} \) be the grand total of the check variety yields, \(h, j = 1, 2, \ldots, v \), and \(i = 1, 2, \ldots, k \) for \(y_{hi} \) yields and \(i = k + 1, k + 2, \ldots, k + v^* \) for the \(z_{hi} \) yields. Let the adjusted row totals be obtained as \(R_h = y_{..} - \) (sum of column totals in which check varieties appeared in row \(h \))/\(k \) and let the adjusted column totals be obtained as \(C_i = y_{..} - \) (sum of row totals in which check varieties appeared in column \(j \))/\(k \). Let the analysis be carried out on the check variety yields and let EMS be the error mean square.

Assuming nonrandom row and column effects, the difference in yields between new varieties \(i \) and \(i' \) occurring in the same row and in columns \(j \) and \(j' \) for \(j \neq j' \) is \(z_{hi} - z_{hi'} = k(C_i - C_i')/\lambda v \) with an estimated standard error of \(\sqrt{2(\lambda v + k)EMS/\lambda v} \). If new varieties \(i \) and \(i' \) occur in the same column and in rows \(h \) and \(h' \), the difference in yield is estimated by \(z_{hi} - z_{h'i'} - k/\lambda v (R_h - R_{h'}) \) with an estimated standard error of \(\sqrt{2(\lambda v + k)EMS/\lambda v} \). If new varieties \(i \) and \(i' \) occur in rows \(h \) and \(h' \) and columns \(j \) and \(j' \), respectively, for \(h' \neq h \) and \(j' \neq j \), the difference between their yields is estimated by \(z_{h'i'} - z_{h'i'} - k (R_h - R_{h'}) + C_i - C_i')/\lambda v \) with an estimated standard error of \(\sqrt{2(\lambda v + 2k + m_{hi'j'})EMS/\lambda v} \), where \(m_{hi'} = 1 \), if the cell at the intersection of the \(h \)th row and \(j \)th column contains a check variety, and zero otherwise, \(m_{hi'} \) being analogously defined. The above design gives smallest average variance for comparisons of new varietal differences for varieties occurring in the same rows or same columns, and is, therefore, variance optimal for these contrasts.

In the event that the experimental area and material is not suitable for a design of the above type, then a suitable two-way \(k \) row \(\times \) \(v \) column design may be used to generate a \(v \times v \) square to accommodate the new varieties under investigation. Some of the designs given by Agrawal [1966a, 1966b, 1966c], Federer [1972], and Hedayat and Raghavarao
[1973], may suffice for this purpose for the check varieties with the empty cells being filled with the new varieties. For simplicity of analysis the generalized row-column design should be chosen to have the rows and columns in as nearly a variance balanced arrangement as is possible.

SUR LES PLANS AUGMENTÉS

RESUME

Quand certains traitements (témoins) sont répétés R fois et d'autres (les nouveaux traitements) sont répétés moins de R fois on peut utiliser des plans augmentés.

Ces plans peuvent être de variance minimum dans l'estimation de contrastes d'effets de témoins ou d'effets de nouvelles variétés ou de nouvelles variétés par rapport au témoin ou de tout en même temps.

Dans ce papier on présente des plans en blocs et des plans en ligne-colonne augmentés à propriétés optimales dans l'estimation de certains contrastes de nouveaux traitements.

REFERENCES

Federer, W. T. [1960]. Augmented designs with two-, three-, and higher-way elimination of heterogeneity. BU-329-M in the Biometrics Unit Mimeo Series, Cornell University. (Also see Abstract in *Biometrics* 17, 166).

Received September 1973, Revised May 1974

Key Words: Augmented experiment designs; Optimum variance designs; Youden and linked block designs; Information from single observations.