Preliminary Syllabus

• Sep 30

Genomics

•Oct 2	Sequence Comparison
• Oct 7	Gene Modeling
• Oct 9	Gene Function Identification – Read intro to HMI

Oct 9 Gene Function Identification – Read intro to HMM on blackboard

Introduction & Genome Assembly

• Oct 14 OCTOBER BREAK

Oct 16 Comparative Genomics

Oct 21 Protein-Protein Interactions

Oct 25 Pathway Resources and Analysis

Oct 28 Structural Genomics / Protein Structure Prediction

Nov 4 Protein Modeling

• Nov 8 EXAM

• Gribskov@purdue.edu – Lilly G-233

Gribskov 3.1

Sequence Comparison

Genomics

Sequence Comparison

Genomics

Gribskov 3.3

Genomics

Gribskov 3.4

Goals

- Gene modeling begins with an uncharacterized genomic sequence and predicts the transcriptional and translational products of each gene, including
 - Gene location, direction, and/or frame
 - 5' and 3' untranslated regions
 - Introns and exons
 - Possibly includes regulatory elements
- Gene modeling is notoriously difficult, especially in eukaryotes, but it is widely felt that current methods produce largely correct models, i.e. have errors in only 30% or so of eukaryotic genes and 10% of prokaryotic genes.
 - Most common errors are in 5' end of gene and small exons
 - Difficult to distinguish errors from true genetic variation splice variants
 pseudogenes

Basic Approaches

- Prokaryotic genes are obviously easier
 - No introns
 - Simpler signals
 - Often better DNA sequence
- Eukaryotic genes are very challenging
 - Exons/introns may be very small (less than 10 bases)
 - Introns may be very large (greater than 1 Mbase)
 - Signals are poorly known and more complex
 - DNA sequence may be more poorly assembled

Basic Approaches

- extrinsic comparison to other known genes
 - sequence comparisons to known proteins, cDNAs
 - genome comparison
- intrinsic properties of the sequence caused by the fact that it codes a protein
 - ∘ ORF length
 - ∘ GC content
 - word frequencies
- hybrid

Extrinsic methods (search by signal)

- Try to identify sequence signals relevant to the presence, absence, frame, and content of genes
- Signals
 - promoters
 - terminators
 - polyA sites
 - Cap signals
 - splice junctions
- Sequence matches
 - expressed genes (ESTs)
 - protein databases
 - closely related genomes (translated DNA vs translated DNA)

Sequence Motifs - Consensus Sequence

 Feature is represented as the majority or plurality character at each position

GCGGTGATAATGGTTGCATG
TTGGGTATATTTGACTATGG
ATGCATACACTATAGGTGTG
TGCAGTAAGATACAAATGGC
ATGGTTATAGTATGCCCATG
TATAAT GCGTG

Sequence Motifs - Consensus Sequence

- Advantages
 - Concise
 - Simple to detect
 - Easily remembered and displayed
- Disadvantages
 - Most information is lost poor ability to find signals
 - Difficult to evaluate partial match
 - Very sensitive to alignment

Sequence Motifs - Regular Expression

Feature represented by logical combination of characters

Sequence Motifs - Regular Expression

- Advantages
 - Fairly concise and easy to understand
 - ∘ Well known algorithms for matching, *O(n log n)*
 - Fairly easy to display
 - Can accept gaps
- Disadvantages
 - Still loses information, better than consensus
 - Rigid
 - Difficult to evaluate partial matches

- PROSITE Release 19.35, of 19-Sep-2006
 - Constant updates
 - 1331 different patterns, 4 rules and 650 profiles/matrices).
 - 1446 documentation entries
- Signatures derived by hand
- Relatively "fragile"
- Hulo N., Bairoch A., Bulliard V., Cerutti L., De Castro E., Langendijk-Genevaux P.S., Pagni M., Sigrist C.J.A.

The PROSITE database.

Nucleic Acids Res. 34:D227-D230 (2006)

- PROSITE "language"
- Each position is separated from the next by a hyphen "-"
- X means any residue
- •[] surround ambiguities, e.g. [ALT] means ala, leu or thr
- { } surround forbidden residues, {AM} means neither ala nor met
- () surround repeat counts
 - (3) means exactly three repeats
- < and > indicate the beginning or end of the sequence, respectively
- •. ends the pattern

- PROSITE tabulated results are useful for training new methods
 - True positives (T) Sequences that have the feature and match the signature
 - False positives (F) Sequences that do not have the feature but match the signature
 - False Negatives (N) Sequences that have the feature but do not match the signature
 - True negatives Sequences that have the feature but do not match the signature
 - Potential (P) likely to be a true positive
 - Maybe (?) might have the feature, but unclear

Gene Modeling

Sequence Motifs - Regular Expression Methods

A PROSITE entry

```
CNMP_BINDING_2; PATTERN.
ID
AC
     PS00889;
     OCT-1993 (CREATED); OCT-1993 (DATA UPDATE); OCT-1993 (INFO UPDATE).
\mathbf{DT}
     Cyclic nucleotide-binding domain signature 2.
\mathbf{DE}
     [LIVMF]-G-E-x-[GAS]-[LIVM]-x(5,11)-R-[STAQ]-A-x-[LIVMA]-x-[STACV].
PA
     /RELEASE=26,33329;
NR
NR
     /TOTAL=56(34); /POSITIVE=55(33); /UNKNOWN=0(0); /FALSE_POS=1(1);
     /FALSE_NEG=1(1);
NR
CC
     /TAXO-RANGE=??EP?; /MAX-REPEAT=2;
     P03020, CRP_ECOLI , T; P29281, CRP_HAEIN , T; P06170, CRP_SALTY , T;
DR
     Q00194, CGCC BOVIN, T; P29973, CGCC HUMAN, T; P29974, CGCC MOUSE, T;
DR
     P05207, KAP2 PIG , N;
DR
     P31324, KAP3_MOUSE, P;
DR
     P29956, XANB XANCP, F;
DR
3D
     2GAP; 3GAP; 1CGP;
DO
     PDOC00691;
```


Gribskov 3.17

- PROSITE
- Steps to defining a signature (manual)
 - 1. Align sequences
 - 2. Find a four or five residue sequence that is part of a known important region (core pattern)

Active site, substrate binding, prosthetic group, etc.

- 3. Scan SWISS-PROT and see what matches
- 4. If only true positives are found, stop. Otherwise, add to the signature and return to step 3.

PROSITE

Generation of signature - "Walker type" ATP binding sites

malk SGCGKS.TLL
hisp SGSGKS.TFL
oppd SGSGKSQSRL
ecatpa AGVGKT.VNM
bovatpb AGVGKT.VFI

[SA]-G-[CSV]-G-K-[ST]-X(0,1)-[TSV]-[LMI]

Simplest method - combine observed residues at each position

Sequence Motifs - PSSM

 Position Specific Scoring Matrix, or weight matrix, is calculated based on observed frequencies in a column

GCGGTGATAATGGTTGCATG
TTGGGTATATTTGACTATGG
ATGCATACACTATAGGTGTG
TGCAGTAAGATACAAATGGC
ATGGTTATAGTATGCCCATG

Gene Modeling

Sequence Motifs - PSSM

- Position specific scoring matrix (PSSM)
- Feature is represented as a matrix with a score for every possible character
- A simple weight matrix for the bacterial promoter -10 region, values here are simply % frequencies

A	2	95	26	59	51	1
C	9	2	14	13	20	3
G	2 9 10 79	1	16	15	13	0
T	79	3	44	13	17	96
	T		T		A	

Sequence Motifs - PSSM

- Advantages
 - Preserves first order information, i.e. assumes that positions are independent
 - Flexible, can model all regular expression type signatures
 - Accommodates partial matches, with known method for evaluating significance of matches
- Disadvantages
 - Difficult to display, impossible to remember

Sequence Motifs - PSSM

 Log-odds matrix - as we have already learned, a log-odds statistic is one of the most powerful discriminators. Weight matrices are often in log-odds form.

$$w_{ij} = In (f_{obs}/f_{exp})$$

 $score = \Sigma w$ over width of pattern

- What should one use for the background model, f_{exp} ?
 - Database composition
 - Global composition of query sequence
 - Local composition of query sequence
 - Combination of query and database sequences

Gene Modeling

Genomics

Search by site

Eukaryotic transcription initiation site

GTATAAAAGGCGGGGGSTATATAWAWRSSNNSS

%frequency per position

Search by Site - Splice sites

- The splicing of introns is a multi step process of RNA maturation which takes place in the nucleus
 - generate mature mRNA molecules for transport to the cytoplasm.
 - Involves a complex of several factors such as snRNP (small nuclear ribonucleoprotein particles) and hnRNPs (heterogeneous nuclear ribonucleoprotein particles). This complex assembly is called the spliceosome.
- Introns usually begin with GU (donor splice site) and end with AG dinucleotides (acceptor splice site).
- The branch point signal typically is located 10-50 bases upstream from the acceptor splice site (the lariat region).

Genomics

Splice signals

Gribskov 3.26

Genomics

Search by Site – Splice junction

Donor site

A	28	59	8	0	0	54	74	5	16
С	40	14	5	0	0	2	8	6	18
G	17	13	81	100	0	42	11	85	21
Т	14	14	6	0	100	2	8	4	45
	С	Α	G	G	Т	Α	A	G	Т

or Weight Matrix

Acceptor site

```
9 9 8 9 6 6 23
                                2 100
                                             28
C 31 36 34 34 37 38 44 41
                        44 40 28
                                             14
G 14 14 12
              9 10
                      8
                         6 6 26
                                 1 0 100
                                             47
T 44 43 48 52 45 44
                  40 41 45 48 23 18 0
                                             11
  Τ
                   Т
                      Т
                         Τ
                                 C A
                                         G
                               Ν
```

Genomics

Search by Site – splice signals

Branch point signal

Consensus: CTGAC

Regular Expression: [CT]T[AG]A[CT]
YTRAY

Y = pyrimidine = C or T R = purine = A or G S = strong = G or C W = weak = A or T

C T G A

Log-odds assuming 45% AT, 55% GC

Search by Site

Eukaryotic translation initiation site

	-6	- 5	-4	-3	-2	-1	+1	+2	+3
A	18	19	24	68	23	15	100	0	0
С	21	40	58	2	55	53	0	0	0
G	47	23	12	30	16	23	0	0	100
Т	13	18	6	0	7	9	0	100	0
	G	C	C	A	C	C	Α	Τ	G

Search by Site

- Consensus sequences
 - ∘ CCAAT-box

```
YYYRRCCAWWSR-212...-57
```

∘ GC-box

W R K R G G Y R K R K Y Y K -164 .. +1

∘ cap-site

```
KCWKYYYY+1+5
```

 Information about composite regulatory elements, transcription factors and eukaryotic promoters are collected in the following databases:

TRANSFAC, http://www.gene-regulation.com/pub/databases.html (Wingender et al., 1996).

TFD, http://www.ifti.org/ootfd/ (Ghosh, 1993)

EPD, epd promoter, (Bucher, 1988)

Search by Site

- Polyadenylation site
- Polyadenylation (cleavage of pre-mRNA 3' end and synthesis of poly-(A) tract) is a very important early step of pre-mRNA processing.
- Sites
 - AATAAA, located 15-20 nucleotides upstream from the poly-(A)
 - ATTAAA, is nearly as active as the canonical sequence.
 - An additional signal with consensus YGTGTTYY (diffusive GT-rich sequence) was revealed in region from 20 to 30 nucleotides downstream of poly-(A) site (site of cleavage) (McLauchlan et al., 1985).

Genomics

Search by Sites

- Methods for identifying sites (weakest to strongest)
 - Consensus sequence
 - Regular expression
 - Log-odds matrix / window analysis (PSSM)
 - Neural network or Hidden Markov model

What is Homology?

- Nothing in biology makes sense except in the light of evolution.
 - Theodosius Dobzhansky (1900-1975)
 - ...without that light it becomes a pile of sundry facts some of them interesting or curious but making no meaningful picture as a whole.
- homology the presence of a similar feature because of descent from a common ancestor
- homoplasy the presence of a similar feature because of convergence
 - Homology cannot be observed. We can't actually see the ancestral organisms/molecules and trace descent.
 - Homology is an inference, a conclusion we draw based on observed similarity.
 - Homology is an all-or-none relationship

Why is homology Important?

- Homology strongly suggests that the molecules have similar structure and function
- There are (very) many ways to fold a polypeptide to place specific chemical groups at specific locations. There is no reason, *a priori*, why proteins with a specific function should have similar 3-D structures.
- Therefore, there is no reason, *a priori*, why unrelated sequences should have any detectable similarity in sequence. Significantly similar molecular sequences are very unlikely to arise by chance i.e. homoplasy on the molecular level is very unlikely.
- When we see <u>significant</u> similarity, we infer that the sequences/structures are homologous, i.e. at some point in the past they share an identical structure.
- The only thing that keeps the sequences tied to each other is the commonality of structure and function arising from homology.

Homology

- Sequences alignments and database searches let us
 - Find homologous sequences (genes/proteins)
 - Map information from known systems to new ones

Gene identification

Gene function

Metabolic and regulatory systems

- Two common classes of homologs
 - Orthologs genes separated by a speciation event, i.e. the same gene in two species
 - Paralogs genes separated by a duplication events, originally the same but now diverged with possibly different functions

BLAST Basic Idea

- Determine in advance the MSP score you need to be significant, S
 - for example, choose S so that you will see fewer than 10 unrelated sequences in the database that score as high
- Look for matching words of length w that score above a threshold, *T*, such that MSPs of score *S* are unlikely to be missed. These are High-scoring Segment Pairs (HSPs)

Sequence Comparison

Genomics

BLAST procedure

- Step 1: Compile list of high scoring words from query
- Step 2: Scan database for "hits"
- Step 3: Extend regions with 2 hits into MSPs
- Step 4: Dynamic programming alignment around MSPs

sequence

BLAST Step 1 - List of High Scoring Words

- Choose a significance level S
- Choose a word size, w, and cutoff, T, so that you are unlikely to miss MSPs with score S
- Make a table of all words in the "neighborhood" of the query (DNA sequences use all words)
- Typically 50 words for each residue

Sequence Comparison

Genomics

BLAST Step 2 - Scan Database

- Scan only for words in neighborhood
- Use lookup tables (like FASTA) or finite automaton
- Keep data in memory to make it faster

BLAST Step 3 - Extend Words to MSPs

- In BLAST2, a "diagonal" must have two word hits before extension to MSP is attempted.
- In principal, must examine diagonal until score drops to zero
- Shortcut, only check until score drops by X

Filtering

- Some sequences give spurious matches because of their unusual properties. Such sequences are automatically filtered by BLAST
- Filters remove "low entropy" sequences. These are repetitive sequences that often give anomalous matches in a database search.
 - Degenerate sequences e.g., poly A runs
 - Dinucleotide, trinucleotide (or longer) repeats
 - Transmembrane regions and signal peptides in proteins