Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and study.

2013-11-18 Lab meeting

Yifan Yang
• Background
• Scientific question
• Algorithm the paper introduced
• Discussion
PacBio® Data Characteristics

Depending on the insert size of the library, the PacBio® RS can be optimized to generate longer sequences or shorter but higher quality sequences.

Continuous Long Reads (CLR). A large insert library (e.g., 6-10kb) results in long CLR reads up to 10 kb:

![Continuous Long Reads Diagram]

Circular Consensus Sequence (CCS). A short insert library (e.g., 500-1000 bp) favors multiple passes around each circular SMRTbell™ construct. The sequence generated by multiple observations of a single DNA molecule can be summarized as a higher quality (>99% accuracy) consensus sequence.

![Circular Consensus Sequence Diagram]
Background: Advantage v.s disadvantage of PacBio SMS

Disadvantage:
PacBio Long reads: ~11% error (15%)
Error: uniformly distributed insertions and deletions, very few substitution

Advantage:
mean = 2246bp
max = 23,000bp
Single molecule sequencing
Available for RNA-seq-long reads RNA-seq

Two main problems of short reads RNA-seq:
Ambiguous reads mapping
Assembly for transcripts

Will PacBio SMS be a future?
Question: How to map the reads to genome with high error rate?
3 steps Algorithm

Find anchor

rough alignment

refinement alignment
Two critical questions:

1. How to define the length of anchor K?
2. Whether anchor number N will influence mapping?
How to define the length of anchor K?
How many bases have to be at least sequenced to get a K error-free length?
They expect to find at least 10 anchors for one read

X: number of anchors
Y: probability of sequencing at least X anchors.

L = 1000
Similar regions need more anchors.
As the read length increases, the mapping quality increases!
Simulated datasets

Figure 8.
"Real" datasets btw different methods

Table 2
A comparison of the BLASR, BWA-SW, and BLAT methods on _E. coli_ reads

<table>
<thead>
<tr>
<th>Method</th>
<th>Number of aligned reads</th>
<th>Number of aligned bases</th>
<th>Run time</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLASR-SA</td>
<td>94057</td>
<td>230.8 M</td>
<td>20m 54s</td>
</tr>
<tr>
<td>BLASR-BWT</td>
<td>94527</td>
<td>230.1 M</td>
<td>33m 57s</td>
</tr>
<tr>
<td>BWA-SW</td>
<td>97729</td>
<td>132.4 M</td>
<td>434m 5s</td>
</tr>
<tr>
<td>BLAT</td>
<td>99530</td>
<td>181.7 M</td>
<td>4724m 40s</td>
</tr>
</tbody>
</table>

Table 3
A comparison of the BLASR, and BWA-SW methods on simulated reads

<table>
<thead>
<tr>
<th>Method</th>
<th>Correctly mapped reads</th>
<th>Correctly mapped bases</th>
<th>Incorrectly mapped reads</th>
<th>Incorrectly mapped bases</th>
<th>Skipped reads</th>
<th>Skipped bases</th>
<th>Runtime</th>
<th>Memory footprint</th>
</tr>
</thead>
</table>
| _E. coli_
| BLASR-SA | 108739 | 255.5M | 223 | 0.39M | 3766 | | 49m 16s | 202 MB |
| BLASR-BWT| 108735 | 255.3M | 259 | 0.45M | 3604 | | 59m 39s | 46 MB |
| BWA-SW | 111192 | 251.9M | 1825 | 0.91M | 3003 | | 223m 57s| 190 MB |

| H. sapiens
BLASR-SA	41726	102.3M	1074	1.89M	413		92m 26s	14.7 GB
BLASR-BWT	41582	101.7M	1159	1.75M	472		53m 26s	8.1 GB
BWA-SW	40981	96.3M	292	1.16M	1554		105m 24s	4.2 GB
Discussion

• How to evaluate method?
• Long reads rna-seq is promising?
Thanks!