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We describe and validate a new membrane protein topology prediction
method, TMHMM, based on a hidden Markov model. We present a
detailed analysis of TMHMM'’s performance, and show that it correctly
predicts 97-98 % of the transmembrane helices. Additionally, TMHMM
can discriminate between soluble and membrane proteins with both
specificity and sensitivity better than 99 %, although the accuracy drops
when signal peptides are present. This high degree of accuracy allowed
us to predict reliably integral membrane proteins in a large collection of
genomes. Based on these predictions, we estimate that 20-30% of all
genes in most genomes encode membrane proteins, which is in agree-
ment with previous estimates. We further discovered that proteins with
Ni-Cin topologies are strongly preferred in all examined organisms,
except Caenorhabditis elegans, where the large number of 7TM receptors
increases the counts for N,,C;, topologies. We discuss the possible
relevance of this finding for our understanding of membrane protein
assembly mechanisms. A TMHMM prediction service is available at
http:/ /www.cbs.dtu.dk/services/ TMHMM/ .
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Introduction

The prediction of transmembrane helices in inte-
gral membrane proteins is an important aspect of
bioinformatics. The most successful methods to
date not only predict individual transmembrane
helices, but rather attempt to predict the full top-
ology of the protein, i.e. the total number of trans-
membrane helices and their in/out orientation
relative to the membrane (von Heijne, 1999).
Reliable methods for discrimination between mem-
brane proteins and soluble proteins and for top-
ology prediction have important applications in
genome analysis, and can be used to extract global

trends in membrane protein evolution (Wallin &
von Heijne, 1998).

Early methods for prediction of transmembrane
helices used hydrophobicity analysis alone (see e.g.
Argos et al., 1982). Indeed some helices can be
located with high reliability from a hydrophobicity
plot, but others cannot. Another signal shown to
be associated with transmembrane helices is the
abundance of positively charged residues in the
part of the sequence on the cytoplasmic side of the
membrane, “the positive inside rule” (von Heijne,
1986, 1994). By combining charge bias analysis
with hydrophobicity analysis, better predictions
can be obtained (von Heijne, 1992). Although they
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vary in detail, almost all recent methods for predic-
tion of transmembrane helices rely on those two
signals. Several methods use a sliding window
out/ which is predicted as being part of a membrane
helix or not, either by a weight matrix (Edelman,
1993) or by a neural network (Rost et al., 1995;
Casadio et al., 1996). Some methods use multiple
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alignments to improve on the predictions (Persson
& Argos, 1994; Rost et al., 1996).

Helical membrane proteins follow a “gram-
mar” in which cytoplamic and non-cytoplasmic
loops have to alternate. The grammar constrains
the possible topologies, and thereby the possible
transmembrane helices. Therefore, an integrated
prediction method that takes the grammar into
account can, in principle, give better results,
even at the level of single transmembrane helix
predictions. Jones et al. (1994) describe a
dynamic programming algorithm that maximizes
the total sum of residue scores, while at the
same time obeying the grammar. Different scores
were used for residues in the middle of a helix,
in helix caps, and in loop regions. This method
implicitly combines the hydrophobic signal
and the charge bias signal into one integrated
algorithm in a natural way.

Here we describe a new method, TMHMM,
based on a hidden Markov model (HMM)
approach (a preliminary description of TMHMM
has been published by Sonnhammer et al., 1998). It
resembles the method described by Jones et al.
(1994), in that it has specialized modeling of var-
ious regions of a membrane protein: helix caps,
middle of helix, regions close to the membrane,
and globular domains. One of the main advantages
of an HMM is that it is possible to model helix
length, which has only been done fairly crudely in
most other methods, by setting upper and lower
limits for the length of a membrane helix. The
HMM is very well suited for prediction of trans-
membrane helices because it can incorporate
hydrophobicity, charge bias, helix lengths, and
grammatical constraints into one model for which
algorithms for parameter estimation and prediction
already exist (see e.g. Durbin et al. (1998)). We
further apply TMHMM to predict all membrane
proteins in a large collection of mostly fully
sequenced genomes, and present statistics on the
frequency of proteins with different topologies.
Interestingly, we find that proteins with both the N
and C terminus in the cytoplasm dominate in
almost all organisms.

Another HMM method, HMMTOP, has been
independently developed (Tusnady & Simon,
1998). It builds on a very similar HMM architec-
ture, but the method used for prediction is differ-
ent. A model regularizer is estimated from a set of
known transmembrane proteins, and for prediction
a model is estimated from the query sequence and
then used for predicting the structure of that
sequence. The reported single-sequence prediction
accuracy of HMMTOP, 78 % correct topology, is
roughly the same as that of TMHMM, although
comparing accuracies is difficult due to differences
in datasets and cross-validation methods as dis-
cussed below.

Results

The TMHMM architecture

The layout of the model is shown in Figure 1(a).
Each box in the drawing corresponds to a submo-
del designed to model a specific region of a mem-
brane protein. These submodels contain several
HMM states in order to model the lengths of the
various regions. The arrows show how transitions
between submodels can be made such that they
obey the grammatical structure of the helical trans-
membrane proteins.

We have made no attempt to construct a sophis-
ticated model of the globular domains of the trans-
membrane proteins, so the submodels labeled
“globular” in Figure 1(a) are identical and consist
of just one state with a transition to itself and to a
loop state (see also Figure 1(b)). To capture the
topogenic signal of the proteins, we model the resi-
dues close to the membrane in the submodels
labeled “loop” and “cap”, which are shown in
Figure 1(b). Loops of lengths up to 20 residues are
modeled by the loop model, whereas longer loops
have to use the globular state. The transition top-
ology ensures that any loop of length one or more
is allowed. The 20 loop states of a loop submodel
all have the same distribution of amino acid resi-
dues, but the three loop models are different. The
cap submodels simply model the five first or last
residues of the transmembrane regions. The model
for the core of the transmembrane helices is shown
in Figure 1(c). It is an array of 25 identical states
with the possibility of jumping from one of the
states (state 3 in the drawing) to many of the states
down-stream. This topology models sequences of
lengths between five and 25, which translates to
helix lengths between 15 and 35 when the caps are
included. This is consistent with the distribution of
helix lengths in membrane proteins of known
structure (Bowie, 1997). In this interval, the length
distribution is explicitly represented by the tran-
sition probabilities of the transitions in the helix
model. The HMM parameters, which are the prob-
abilities of the 20 amino acid residues in the states
and the probabilities that determine the length dis-
tributions of transmembrane helices etc., are esti-
mated from a set of 160 proteins in which the
locations of the transmembrane helices are known.
The boundaries of the helices are often inaccurately
determined (even from crystal structures), so we
have designed an estimation procedure in which a
model is used to redefine the boundaries.

Prediction of the transmembrane helices is done
by finding the most probable topology given the
HMM. This will give a set of exact helix bound-
aries. However, there are many almost equally
probable ways to place the helix boundaries, and
there are sometimes regions in the sequence that
show weak signs of being transmembrane helices
or predicted helices that have a fairly low prob-
ability. Such information is not contained in the
most probable prediction. Therefore, we found it
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Figure 1. The layout of the hidden Markov model. (a)
The overall layout. Each box corresponds to one or
more states in the HMM. Parts of the model with the
same text are tied, ie. their parameters are the same.
Cyt. represents the cytoplasmic side of the membrane
and non-cyt. the other side. (b) The detailed structure of
the inside and outside loop models and helix cap
models. (c) The structure of the model for the helix core
modelling lengths between five and 25, which translates
to helices between 15 and 35 when the caps are
included.

very useful also to use the three probabilities that a
given residue is in a transmembrane helix, is on
the cytoplasmic side, or on the periplasmic side.
This additional information, which can be shown
graphically as in Figure 2, shows where the predic-
tion is certain and what alternatives there might
be.

Analysis of correct and incorrect predictions

There are several types of mis-prediction that
can occur when predicting the topology of a mem-
brane protein. The simplest errors are over-predic-
tions and wunder-predictions, ie. predicting a
transmembrane region where none is present or
missing a true transmembrane region. Another
type of error is that two adjoining transmembrane
regions are joined together, so that they are pre-
dicted as a single long region, which we will term
as a “false merge”. Similarly, a long transmem-
brane region can be falsely predicted as being two
short regions, here termed a “false split”. Of

course, all the helices can be predicted correctly,
but the overall topology can be predicted as the
inverse of the real topology, i.e. an inverted top-
ology. A predicted transmembrane helix is con-
sidered correct if it overlaps by at least five
residues with a real helix. If this fails, it is con-
sidered a shifted prediction if there is an overlap of
at least one amino acid with the real helix. Known
signal peptides were not removed from the
sequences and were not counted as valid trans-
membrane helices. Signal peptides are sometimes
hard to distinguish from transmembrane helices, as
discussed below.

Table 1 shows the occurrence of errors in a
cross-validation experiment. The ten cross-vali-
dation models corresponding to the first column of
numbers in Table 1 were used in the discrimination
analysis below. Since the training algorithm has a
stochastic element (see Materials and Methods), the
accuracy can vary. The cross-validation experiment
was therefore repeated 40 times, and averages and
standard deviations were calculated. These data
are also shown in Table 1.

Discrimination between non-membrane and
membrane proteins

Although the method has been developed and
optimized for correct prediction of the topology, it
can also be used for discrimination between helical
membrane proteins and other proteins. This can be
achieved in several ways, and we have investi-
gated discrimination based on the following
values:

(1) The number of predicted transmembrane
helices (abbreviated “pred. no. TMH").

(2) The expected number of residues in trans-
membrane helices (abbreviated “exp. no. AA”).

(3) The expected number of transmembrane
helices.

The first is simply a count of the number of
helices in the most likely structure found by the
model. If the expected number of residues in trans-
membrane helices is high, the probability that it is
a helical membrane protein is also high. A
threshold value can be determined from the data
and used for discrimination. The shortest trans-
membrane helices are around 18 residues long, so
the cut-off value should be close to that. If the
expected number of transmembrane helices is
around one or larger, it is likely to be a helical
transmembrane protein. Since it is an expectation
value, it is not an integer number, and again a
threshold value can be determined.

These measures are calculated using the cross-
validation models, i.e. for a membrane protein, the
model is used which did not have the protein in
the training set. For the non-membrane proteins,
the averages over the ten cross-validation models
were calculated. The three discrimination measures
are of course correlated. Figure 3 shows the corre-
lation between the predicted number of helices and
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Figure 2. Posterior probabilities
for a single sequence. The posterior
probability  for  transmembrane
helix, inside, or outside displayed
for the gluconate permease 3 from
E. coli (SWISS-PROT entry
GNTP_ECOLI), for which the struc-
ture is unknown. Some parts of the
protein are relatively certain,
whereas other parts are less certain.
It is unclear, for instance whether
there are one or two transmem-

brane segments between amino acid 100 and 150, and between 325 and 375. This uncertainty is also reflected in a
total uncertainty in which side the loops are (inside or outside) between 150 and 325. For this protein the single most
probable topology turns out to have two helices in both of these regions giving 13 transmembrane helices in total,
and this prediction turns out to be essentially identical to the annotation in SWISS-PROT. However, the posterior
probability plot shows that the topology with only one helix in these regions (11 in total) is a quite likely alternative,
whereas a topology with 12 or 14 transmembrane helices is not so likely because it would fit badly with the posterior
probabilities of inside/outside in the two ends of the protein. In Klemm et al. (1996) 14 transmembrane helices are
predicted for this protein; three helices are predicted in the region beween 100 and 150.

the expected number of transmembrane helices.
These numbers are also correlated to the expected
number of residues in transmembrane helices, as
seen in Figure 4.

With all three measures, it is possible to identify
all but one transmembrane protein in this data set
with a very small number of false positives: for the
rest of this work, we have used the expected num-
ber of residues in transmembrane helices. Figure 5
shows the discriminative power as a function of
the cut-off used. At a cut-off of 18, which we have
used below, the fraction of false positives is 0.5-1 %
and around 1% false negatives. The five proteins
that are incorrectly classified as transmembrane in
the cross-validation test are shown in Table 2. The

Table 1. Types of errors

chlorophyll a-b binding protein ab96 (Swissprot
entry CB21_PEA) is the only membrane protein in
the set of 160 that is classified as a non-membrane
protein. This protein may be difficult to classify
correctly because it is inserted into the thylakoid
membrane.

For comparison, we have tested the “maxH”
method (Boyd et al., 1998) on the same data sets. It
had seven false negatives (TMHMM had one) and
three false positives (TMHMM had five). These
numbers are valid for all p-value cut-offs between
0.04 and 0.68 for maxH. This test used the standard
maxH program, so no cross-validation was per-
formed, which might bias the result in favor of
maxH.

Cross-validation

Mean and std. dev.

Number of proteins 160
of which single-spanning: 52
Correctly predicted topology: 124
Invertedly predicted topology: 11
Correctly predicted N-terminal: 141
Under-predictions: 16
of which single-spanning: 1
Over-predictions: 12
of which single-spanning: 7
Both over- and under-predictions: 3
of which single-spanning: 1
Total number of real helices: 696
Number of over-predicted helices: 17
Number of under-predicted helices: 19
Number of shifted helix predictions: 0
Number of falsely merged helices: 0
Number of falsely split helices: 0

32.50 %
77.50 % 120.2 1.3
6.88 % 10.5 0.9
88.12 % 138.0 1.3
10.00 % 18.4 1.4
0.62 % 0.6 0.5
7.50 % 14.1 0.6
4.38 % 7.0 0.2
1.88 % 3.60 0.8
0.62 % 0.58 0.5
2.44 % 20.1 0.6
2.73% 21.7 1.8
0.33 0.5
0.50 0.6
0 0

The number of different types of errors in a cross-validated test of TMHMM. First column shows the cross-validation that is the
basis for the discrimination analysis and the second column shows the average and standard deviation for 40 independent cross-

validation experiments.
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Figure 3. Correlation between the expected number of transmembrane helices and the predicted number of helices.
The insert shows a blow-up of the critical region around 0.9 expected transmembrane helices where the positive
points were moved up by 0.02 to separate positives and negatives. Notice that the points for the negative set rep-
resent averages over the cross-validation models and therefore the predicted number of helices is not necessarily inte-
ger. The error bars show the standard deviation over the ten models.

Signal peptides and porins

The signal peptides that target a protein for
export contain a hydrophobic region that can easily
be mistaken for a transmembrane region by a pre-
diction program. TMHMM was tested on a set of
signal peptides by measuring how many of the sig-
nal peptides were predicted to be membrane pro-
teins as described above. The result is shown in
Table 3. For the eukaryotic and Gram-negative bac-
terial signal peptides, TMHMM erroneously ident-

ifies ~20% as transmembrane helices. For signal
peptides from Gram-positive bacteria, however, a
full 60% are predicted as transmembrane helices.
Presumably, this is because signal peptides from
Gram-positive bacteria have distinctly longer
hydrophobic regions (von Heijne & Abrahmsen,
1989) than the other two classes.

Porins are the only class of membrane-spanning
proteins besides helix-bundles known today. In
these proteins, the membrane-spanning regions

Figure 4. Correlation between
the expected number of transmem-
brane helices and the expected
number of amino acids in trans-
membrane helices. Only points

around the critical region of about
. 0.9 expected transmembrane helices
are shown. The error bars on the
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negative points show the standard
1.1 1.2 deviation over the ten cross-vali-
dation models.
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Figure 5. Discrimination between transmembrane pro-
teins and soluble proteins. Discrimination based on the
expected number of residues in transmembrane helices.
The fraction of false negative (continuous line) and false
positive predictions (broken line) as a function of the
cut-off value. The broken line is at 18, which is the cut-
off we used.

form a P-barrel (Cowan & Rosenbusch, 1994).
Although their transmembrane regions generally
are shorter and much less hydrophobic than those
in helical membrane proteins, they could still be a
source of falsely predicted transmembrane helices.
After taking redundancy into account and remov-
ing structures that were genetically engineered var-
iants of native porins, we were left with a porin set
consisting of only six structures. These were ana-
lyzed in exactly the same way as the signal-peptide
sets, and they were all predicted as not containing
transmembrane helices. As expected, TMHMM
thus does not identify porins as integral membrane
proteins.

Genome-wide analysis of membrane proteins

Given that TMHMM is clearly superior to the
prediction programs TOPPRED and ALOM (von
Heijne, 1992; Klein et al., 1985) both with regard to
discrimination between membrane proteins and
soluble proteins and with regard to topology
prediction, we have repeated our earlier analysis

Table 2. False positives

(Wallin & von Heijne, 1998) of membrane proteins
in organisms with fully sequenced genomes. We
can now provide a better estimate of the number
of membrane proteins in each organism, and also
better estimates of the frequencies with which pro-
teins of different topologies are found in different
organisms.

A model was trained from all the 160 sequences
in the training set according to the training scheme
described below. After ascertaining that the num-
ber of false positives obtained with this model on
the negative set was in agreement with the results
above, this model was used for the genome stu-
dies. For each gene, the expected number of amino
acid residues in transmembrane helices, as well as
the topology prediction, were calculated. As
shown above, signal peptides are sometimes falsely
predicted as transmembrane helices. To correct this
problem, we took all proteins with a predicted
transmembrane helix at the N terminus that might
be a signal peptide. These proteins were analyzed
with SignalP-HMM (Nielsen & Krogh, 1998), and if
a signal peptide was predicted, it was removed
from the protein. This was done only for the eukar-
yotes and the Gram-positive and Gram-negative
bacteria because SignalP is only developed for
these groups of organisms (see Materials and
Methods for details).

A preliminary test of the accuracy of SignalP-
HMM reveals that about 80% of the true signal
peptides are found, and 20% of transmembrane
helices are mistaken for signal peptides in eukar-
yotes. For Gram-positive bacteria these estimates
are 90% and 10%, and for Gram-negative, 95%
and 20%. This test has not been properly cross-
validated, but we believe that these numbers are
reasonable estimates.

Estimates of the percentages of all annotated
genes that encode integral membrane proteins of
the helix bundle class are presented in Table 4. In
general, these vary between ~20% and ~30%. A
previously suggested correlation between the fre-
quency of predicted membrane proteins and the
total number of genes in the genome (Wallin &
von Heijne, 1998) is not discernible in these new
estimates (see Figure 6). Two organisms have
noticeably higher fractions of membrane proteins

Exp. number aa in

PDB entry membrane Std. dev.
1RDZ (A) Fructose 1,6-bisphosphatase; 24.3 3.6
1KVD (A) Smk toxin 24.7 0.5
INOX Nadh oxidase 21.0 1.1
1CLY CrylA(a) insecticidal toxin 20.6 1.6
1ENO Enoyl acyl carrier protein reductase 18.9 5.7

The five proteins that are wrongly classified as transmembrane. They all have a known 3-D structure. The first column gives the
PDB identifier with the chain in parenthesis. The second column gives the expected number of transmembrane helices averaged
over the ten cross-validation models, and the last column the standard deviation. (Note that CrylA acts by inserting into the mem-

brane, so it is perhaps not entirely a false positive.)
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Table 3. The number of signal peptides predicted as
transmembrane proteins

No. of signal Predicted as tm

Class peptides protein

Eukaryotes 1011 209 (21 %)
Gram-negatives 266 60 (23 %)
Gram-positives 141 85 (60 %)

than the general trend: Plasmodium falciparum and
C. elegans.

Representative plots of the number of proteins
with a given predicted topology are shown in
Figure 7. In general, the results are similar to that
found in previous analyses (e.g. the high incidence
of 12TM proteins in bacteria and of 7TM proteins
in multi-cellular organisms), but we now see an
additional feature not evident in earlier work:
multi-spanning proteins with intracellular N and C
termini are strongly preferred. From Table 5, it is
clear that N; -C;, topologies are 1.5-3 times more
common than each of the other topologies. The
only exception is C. elegans, where the 7TM pro-
teins make the N,,-C;, topologies as common as
the N;,-C;, topologies. To make sure that these
results are not influenced by some systematic error

in the TMHMM  algorithm, we also wused
TOPPRED (von Heijne, 1992) to predict the topolo-
gies of the same proteins as used in the TMHMM
analysis, and obtained essentially the same results
(data not shown).

Discussion

TMHMM predicts transmembrane helices from
single sequences with a high level of accuracy.
Only about 2.5% of the 696 helices in the data set
of 160 proteins are missed, and about an equal
number of false helices are predicted. About 77-
78 % of the topologies are predicted correctly, and
an additional 7 % were correct except that the top-
ology was inverted, i.e. the cytoplasmic side was
predicted as periplasmic and vice versa. This com-
pares well to other methods, the best of which use
multiple alignments to achieve the same level of
accuracy (Rost et al., 1996; Tusnady & Simon,
1998), see Sonnhammer et al. (1998) for compari-
sons. With our dataset and with no possibility to
cross-validate, we measured a single-sequence
accuracy of HMMTOP (Tusnady & Simon, 1998) of
only 64 %. If we, however, remove known signal
peptides from the sequences, the non-cross-
validated accuracy of HMMTOP increases to 78 %.
On the same data, TMHMM’s cross-validated

Table 4. The number of predicted transmembrane proteins for several organisms

Number of annotated

One or more Reduced by signal

Organism genes Expected no AA > 18 pred. TMHs peptides
S. cerevisine 6305 1390 (22.05 %) 1303 (20.67 %) 50
C. elegans 19,099 5900 (30.89 %) 5778 (30.25 %) 285
D. melanogaster 14,100 2888 (20.48 %) 2835 (20.11 %) 106
A. thaliana (chrom. II and IV) 7859 1653 (21.03 %) 1578 (20.08 %) 217
P. falciparum (chrom. II and III) 225 98 (43.56 %) 91 (40.44 %) 2
E. coli 4289 910 (21.22 %) 898 (20.94 %) 135
H. influenzae 1709 328 (19.19 %) 323 (18.90 %) 48
H. pylori 1553 295 (19.00 %) 293 (18.87 %) 33
C. jejuni 1634 348 (21.30 %) 344 (21.05 %) 53
R. prowazekii 834 220 (26.38 %) 213 (25.54 %) 26
N. meningitidis 1989 352 (17.70 %) 354 (17.80 %) 38
M. tuberculosis 3918 747 (19.07 %) 691 (17.64 %) 95
B. subtilis 4100 983 (23.98 %) 987 (24.07 %) 145
M. genitalium 480 98 (20.42 %) 97 (20.21 %) 12
M. pneumoniae 677 126 (18.61 %) 122 (18.02 %) 23
T. pallidum 1031 241 (23.38 %) 244 (23.67 %) -
B. burgdorferi 850 244 (28.71 %) 244 (28.71 %) -
C. pneumoniae 1052 293 (27.85 %) 292 (27.76 %) -
C. trachomatis 894 208 (23.27 %) 219 (24.50 %) -
C. muridarum 818 189 (23.11 %) 198 (24.21 %) -
A. aeolicus 1522 309 (20.30 %) 315 (20.70 %) -
Synechocystis sp. 3169 816 (25.75 %) 818 (25.81 %) -
D. radiodurans 3103 586 (18.88 %) 595 (19.17 %) -
T. maritima 1846 422 (22.86 %) 445 (24.11 %) -
M. jannashchii 1715 317 (18.48 %) 324 (18.89 %) -
M. thermoautotrophicum 1869 407 (21.78 %) 407 (21.78 %) -
A. fulgidus 2407 488 (20.27 %) 492 (20.44 %) -
P. abyssi 1765 398 (22.55 %) 404 (22.89 %) -
P. horikoshii 2064 567 (27.47 %) 534 (25.87 %) -

For each organism the number of annotated genes is given, the number of predicted transmembrane proteins with the criterion
that the most likely structure contains at least one transmembrane helix, and the number of predicted transmembrane proteins with
the criterion that 18 or more residues are predicted to be in the membrane. Finally the number of predicted transmembrane proteins

that were removed when correcting for signal peptides is given.
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Figure 6. Number of predicted transmembrane pro-
teins versus the number of genes. The errorbars show
the two different predictions in Table 4.

accuracy is 79%, while non-cross-validated
TMHMM reaches 84 % accuracy.

In the analysis of mispredictions, it is interesting
to note that the number of falsely merged helices
and the number of split helices is very low (in fact
zero). We believe this to be due to natural model-
ing of helix lengths and the grammar in the HMM.
The main type of error made by TMHMM is to
predict signal peptides as transmembrane helices
for 60 % of Gram-positive bacterial proteins with a
signal peptide, and for about 20 % of proteins from
other organisms. Porins do not seem to be con-
fused with helical membrane proteins.

There are several possible methods for discrimi-
nating between non-membrane and transmem-
brane proteins. Two expectation numbers that can
be calculated from the model, the expected number
of transmembrane helices and the expected num-
ber of amino acid residues in transmembrane
helices, were shown to be equally good for dis-
crimination. Using a set of 645 proteins with
known 3D structure, it was shown that TMHMM
discriminates very well between integral mem-
brane proteins and water soluble proteins. Less
than 1% of the non-membrane proteins analyzed
were wrongly classified, and only one of 160 mem-
brane proteins was classified as non-membrane
bound. However, the negative set used did not
contain signal peptides.

We have compared the discriminative power of
TMHMM to that of maxH (Boyd et al., 1998), a
recently developed method that has been opti-
mized for discrimination but which cannot be used
for topology prediction. The performance of
TMHMM is slightly better in the sense that only
six proteins are wrongly classified (one false nega-
tive plus five false positives) compared to ten for
maxH (seven false negatives plus three false posi-
tives). The fact that maxH is more conservative in
predicting transmembrane segments makes it bet-

ter at discriminating signal peptides from trans-
membrane segments, however, by increasing the
threshold for TMHMM the same effect could prob-
ably be achieved, but only at the price of a reduced
accuracy in topology prediction. For this reason,
we have chosen to deal with signal peptides by
trying to remove them after the prediction of trans-
membrane helices.

With the TMHMM program, we estimate that
integral membrane proteins of the helix bundle
class account for roughly 20-30% of all genes in
most genomes, which was also found by Wallin &
von Heijne (1998); only P. falciparum stands out as
an exception, with around 40% predicted mem-
brane proteins, but this is based on a quite small
number of genes annotated in chromosome 2 and
3. The two methods tested for discrimination
(expected number of amino acid residues in the
membrane and one or more predicted helices)
yield almost identical results, within two percen-
tage points except for P. falciparum, where the
difference is about three points. Apart for the
uncertainty in the predictions, there is also signifi-
cant uncertainty in the annotated genes. The influ-
ence of wrongly annotated genes on these numbers
is hard to estimate, but we believe it is small.

The problem with signal peptides is difficult to
quantify exactly. Typically 10-25 % of the predicted
transmembrane proteins were subjected to the
analysis with SignalP. With an accuracy estimated
to be around 20 %, it means that on the order of
2-5% of the predictions have a “signal peptide
error”.

As noted in the Results, the possible correlation
between the fraction of open reading frames
(ORFs) encoding membrane proteins and genome
size proposed earlier (Wallin & von Heijne, 1998)
is not apparent in our new, more accurate esti-
mates. The high fraction of membrane proteins in
C. elegans is almost fully accounted for by the
expansion of the G-protein coupled receptor
family. Beyond this, however, the fraction of mem-
brane proteins is remarkably constant between
organisms.

An interesting new finding is that N;,-C;,, topolo-
gies are preferred in all organisms except C. ele-
gans. It has previously been noticed that N,
topologies are over-represented (Jones, 1998). All
N;-Ci, proteins have an even number of trans-
membrane helices, and can be thought of as con-
structed from a succession of “helical hairpins”, i.e.
two transmembrane helices connected by an extra-
cytoplasmic loop. Experimental studies have
suggested that the helical hairpin may act as an
independent “insertion unit” during membrane
protein assembly (Gafvelin & von Heijne, 1994;
Gafvelin et al.,, 1997), and hence that topologies
constructed from helical hairpin units may evolve
more easily than other topologies. It is also clear
from a number of experimental studies that the
translocation of N-terminal tails across both the
bacterial inner membrane and the ER membrane of
eukaryotic cells places strong restrictions on the
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Table 5. Statistics on the orientation of predicted membrane proteins

Multispanning
Number of
Organism annotated gens  Pred TMHs Single spanning Cin Cout
S. cerevisiae 6305 1303* N-term in 282 362 146
N-term out 202 155 156
C. elegans 19,099 5778* N-term in 1152 1074 495
N-term out 919 1456 682
D. melanogaster 14,100 2835* N-term in 692 650 263
N-term out 502 371 357
A. thaliana (chrom. II and IV) 7859 1578* N-term in 439 318 125
N-term out 304 176 216
P. falciparum (chrom. II and III) 22 91* N-term in 20 20 7
N-term out 24 8 12
E. coli 4289 898* N-term in 85 294 106
N-term out 68 202 143
H. influenzae 1709 323* N-term in 40 89 39
N-term out 32 78 45
H. pylori 1553 293* N-term in 48 78 23
N-term out 40 53 51
C. jejuni 1634 344* N-term in 54 89 39
N-term out 35 76 51
R. prowazekii 834 213* N-term in 49 49 29
N-term out 18 39 29
N. meningitidis 1989 354* N-term in 77 86 34
N-term out 38 62 57
M. tuberculosis 3918 691* N-term in 132 217 83
N-term out 82 91 86
B. subtilis 4100 987* N-term in 129 341 121
N-term out 71 211 114
M. genitalium 480 97* N-term in 9 25 9
N-term out 18 22 14
M. pneumoniae 677 122* N-term in 14 38 9
N-term out 21 29 11
T. pallidum 1031 244 N-term in 83 73 28
N-term out 15 19 26
B. burgdorferi 850 244 N-term in 96 60 24
N-term out 13 26 25
C. pneumoniae 1052 292 N-term in 63 105 28
N-term out 20 28 48
C. trachomatis 894 219 N-term in 49 78 27
N-term out 16 20 29
C. muridarum 818 198 N-term in 49 71 21
N-term out 14 19 24
A. aeolicus 1522 315 N-term in 71 91 39
N-term out 33 41 40
Synechocystis sp. 3169 818 N-term in 242 213 98
N-term out 62 87 116
D. radiodurans 3103 595 N-term in 118 185 77
N-term out 40 93 82
T. maritima 1846 445 N-term in 135 133 55
N-term out 33 41 48
M. jannashchii 1715 324 N-term in 77 103 35
N-term out 29 53 27
M. thermoautotrophicum 1869 407 N-term in 92 109 60
N-term out 46 63 37
A. fulgidus 2407 492 N-term in 93 168 69
N-term out 53 60 49
P. abyssi 1765 404 N-term in 71 149 62
N-term out 24 59 39
P. horikoshii 2064 534 N-term in 106 176 69
N-term out 50 70 63

The number of genes and the number of predicted transmembrane proteins are shown first. The star indicates that the prediction
has been corrected for signal peptides. Then follows the number of single-spanning and the number of multi-spanning predicted
with each of the possible orientations.

amino acid sequence of the tail (Monne et al,
1999; Whitley et al., 1995, 1994), thus working
against the appearance of N, topologies during

evolution.

TMHMM is available as a prediction server at
http:/ /www.cbs.dtu.dk/services/TMHMM. There
are also pointers to the data sets used and other

resources at this web site.
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Materials and Methods

Data sets

We have compiled a set of 160 proteins, most of
which have experimentally determined topology. It
contains 108 multi-spanning and 52 single-spanning
proteins.

It should be noted that nearly all proteins with an
experimentally determined topology have been analyzed
with biochemical and genetic methods that are not
always entirely reliable (Traxler et al., 1993). Only a very
small number of membrane protein structures have been
determined at atomic resolution, and even in these cases
the exact location of the membrane is not obvious
(Wallin et al., 1997). Given the uncertainty in the cur-
rently available data, perfect prediction accuracy is thus
unrealistic. To avoid errors as much as possible, we did
not include proteins for which different experiments
have yielded conflicting topologies and where it was not
obvious which topology was closer to the truth. Signal
peptides were not removed from any of these proteins.

The dataset is available at http://www.cbs.dtu.dk/
krogh/TMHMMY/ in the ten cross-validation partitions
(see below).

To test the discrimination between membrane pro-
teins and other proteins, a set of 645 soluble proteins
with known structure was used. This set has been
extracted from the Protein Data Bank (PDB) and hom-
ologous sequences removed as described by Lund et al.
(1997). The set is available at the above mentioned
web address.

A set of signal peptides used for training of SignalP
(Nielsen ef al., 1997) was used to test the discrimination
between signal peptides and membrane helices. This
redundancy-reduced set contains 1011 eukaryotic, 141
Gram-positive, and 266 Gram-negative sequences. The
sequences consist of the signal peptides and 30 amino
acid residues after the cleavage site. This set is available
from ftp:/ /virus.cbs.dtu.dk/pub/signalp/.

For porins, we used only crystallographically deter-
mined structures. Since most porin structures in PDB are
annotated “engineered”, very few native structures were
found. The PDB entries 1mal, 1mpm, 1 pho, 1prn, 2omf
and 2por were selected to serve as a porin test set.

All genes annotated in the Genbank entry of the gen-
omes and chromosomes used were downloaded from
ftp:/ /ncbinlm.nih.gov/genbank/genomes/, except for
C. elegans, which was downloaded from the URL: ftp://
genome.wustl.edu/pub/gscl/C_elegans/elegans.gz.

Cross-validation

Because of the lack of independent test data, all results
reported are based on tenfold cross-validation. The set of
160 membrane proteins was partitioned into ten subsets
with 16 proteins in each. It was made sure that no two
proteins from different sets were more than 25 % identi-
cal in a Needleman-Wunsch alignment by the ALIGN
program in the FASTA package (Pearson, 2000). Within
the sets, the similarity was allowed to be higher. Cross-
validation was done by training on all sequences in nine
subsets, and testing the accuracy on the subset left out
from training. This was repeated for all ten subsets.

For the discrimination between membrane proteins
(positives) and water soluble proteins (negatives) the
fraction of false positives of the entire negative set was
found for all ten models at a given cut-off value, and the

average reported. The fraction of false negatives was
found by adding up the false negatives for each of the
models tested on the corresponding test set and dividing
by the size of the entire set (160).

HMM training

Usually HMMs are estimated by maximizing the like-
lihood P(x,..., xN|8) of the sequences x!,..., xV in the
training set with respect to the model parameters 0. For
the transmembrane model used here, it would require
that the different segments (helices, inside loops, etc) be
cut out of the sequences and the corresponding submo-
dels estimated separately. Instead, we wuse labeled
sequences for the estimation (Durbin et al., 1998; Krogh,
1994, 1997), which is a simple generalization of the stan-
dard method that constrains residues labeled as mem-
brane helix to use only states labeled the same, and
those labeled as cytoplasmic to used states for cyto-
plasmic residues, etc. The HMM is estimated in three
stages.

In the first stage, the aim is to correct for the inaccur-
ate boundaries of the annotated transmembrane helices.
This is done by allowing six residues around the bound-
aries to match any state in the model. For instance, at a
cytoplasmic boundary of a helix we start with a labeling
“MMMMMMiiiiii” for the 12 residues around the
boundary (M represents membrane helix and i rep-
resents inside or cytoplasmic). Now we put wildcard
labels () around the boundary, so the labels become
‘MMM......jiii".  During estimation the wildcards can
match any state, so in this case they can match states in
both the membrane helix submodel and in the submodel
for inside residues. If a loop is shorter than six, it is
ensured that the middle label (or the two middle ones)
always remains, so for instance ‘'MMMMMiiiiMMMMM’
becomes ‘MM....ii...MM’. The choice of three residues to
each side seems to work well, but has not been seriously
optimized.

During model estimation, the boundaries were then
placed automatically within the allowed window so as
to optimize the total likelihood of the model. We use the
Baum-Welch iterative re-estimation procedure, which is
guaranteed to converge to a local maximum of the likeli-
hood. It is well known that there is a problem with
many suboptimal local maxima of the likelihood for an
HMM. Therefore, noise was added to the model par-
ameters during the estimation procedure, but the
amount of noise was decreased in each iteration of the
procedure until it reached zero, after which point the
estimation procedure is continued until convergence. To
be precise: to a model parameter p, the amount of noise
added is A * p * n, where 1 is a random number between
0 and 1, and A is the amplitude of the noise, which starts
at A =1 and is multiplied by 0.8 in each iteration of the
estimation procedure. It has been shown that such a pro-
cedure improves on the final likelihood (Hughey &
Krogh, 1996), although it may not lead to the global
maximum.

In the second stage of estimation, the helix boundaries
were re-estimated with the first model. This was done by
again ““unlabeling” the helix boundaries (this time by
five residues to each side), and then finding the most
probable labeling constrained by the remaining labels. It
means that the over-all topology of the protein was
fixed, but the model decided where to put the helix
boundaries within a window of ten residues. After the
relabeling, a new model was estimated where all labels
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are fixed. This estimation started from the model of
stage one and was estimated with the Baum-Welch pro-
cedure without noise.

In the third and final stage of estimation, the model
from stage two was further optimized using a discrimi-
native method of estimation as described by
Sonnhammer et al. (1998).

Prediction

To find the most probable topology of a membrane
protein, we used the N-best algorithm described by
Krogh (1997).

The posterior probability that a residue is found in a
helix, the cytoplasm, or the periplasm is calculated in the
following way. The posterior probability of each model
state is found by the forward-backward algorithm
(Durbin et al., 1998; Rabiner, 1989). These probabilities
are then added up for states belonging to each of the
three categories. These probabilities are used for plots
like Figure 2.

The expected number of residues in a transmembrane
helix is found by simply adding the posterior probabil-
ities for each of the residues being in a transmembrane
helix. To find the expected number of helices in a pro-
tein, we picked a state that had to be used for an out-
going helix, and the corresponding state for an ingoing
helix. The posterior probabilities (as found above) for
these two states were then added along the sequence.
This gives the expected number of times the sequence
passes through a helix.

The analysis of each genome was done in the follow-
ing way. The expected number of residues in the mem-
brane was calculated for each protein. If it was larger
than three the number of predicted transmembrane
helices was found by the N-best algorithm (this pre-
filtering was done to save computer time). If the organ-
ism was a eukaryote or a Gram-positive or negative bac-
terium, it was checked for signal peptides. Proteins with
a transmembrane helix predicted less than 50 amino acid
residues from the N terminus, and an N terminus pre-
dicted as inside, were extracted as likely candidates for
signal peptides. Such proteins were sent to SignalP-
HMM (http://www.cbs.dtu.dk/services/SignalP-2.0/),
and if a cleavage site was predicted with a probability of
more than 0.5, the predicted signal peptide was cleaved
off. Then the prediction of transmembrane helices was
redone, with the change that the prediction was con-
strained to have the N terminus outside. These predic-
tions were used for all statistics.

For comparison the maxH program ‘New_-
maxH_v3.3.pl" was downloaded from http://beck2.-
med.harward.edu/resources/maxh/ and ran on a Unix
workstation with default settings.
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