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ABSTRACT

Motivation: RNA secondary structure contains many non-canonical
base pairs of different pair families. Successful prediction of these
structural features leads to improved secondary structures with
applications in tertiary structure prediction and simultaneous folding
and alignment.
Results: We present a theoretical model capturing both RNA
pair families and extended secondary structure motifs with shared
nucleotides using 2-diagrams. We accompany this model with
a number of programs for parameter optimization and structure
prediction.
Availability: All sources (optimization routines, RNA folding, RNA
evaluation, extended secondary structure visualization) are published
under the GPLv3 and available at www.tbi.univie.ac.at/software/
rnawolf/.
Contact: choener@tbi.univie.ac.at

1 INTRODUCTION
The classical RNA secondary structure model considers only the
Watson–Crick AU and GC base pairs as well as the GU wobble pair.
Adetailed analysis of RNA3D structures, however, reveals that there
are 12 basic families of interactions between the bases, all of which
appear in nature (Leontis and Westhof, 2001; Leontis et al., 2002).
Moreover, virtually all known RNAtertiary structures contain the so-
called non-Watson–Crick base pairs. This has led to the development
of an extended presentation of RNA contact structures with edges
labeled by their pairing type (an example can be seen in Fig. 1). This
extended description of base pairing is commonly termed after its
inventors the Leontis–Westhof (LW) representation.

The LW representation has proved to be a particularly useful
means of analyzing 3D structures of RNA as determined by X-
ray crystallography and NMR spectroscopy (Leontis and Lescoute,
2006). In particular, it has led to the discovery of recurrent structural
motifs, such as kink-turns and C-loops, that act as distinctive
building blocks of 3D structures. The sequence variation in these
structural motifs follows combinatorial rules that can be understood
by the necessity to maintain the overall geometry when base pairs
are exchanged. These isostericity rules are discussed in detail by
Lescoute et al. (2005); Stombaugh et al. (2009). As a new level
of RNA structure description, the ability to predict non-standard
base pairs can be expected to improve the performance of RNA
structure prediction. Furthermore, information about evolutionary

∗To whom correspondence should be addressed.

Fig. 1. Example of a structure containing base triplets. The inner part
(bases 14–37) of the PDB structure 1dul is shown in a 3D representation
and as a 2D structure plot displaying the non-standard base pairs in LW
representation. The four bases highlighted in the 3D structure form the two
base triplets that can be seen in the upper part of the interior loop in the 2D
structure.

conservation of the isostericity classes of these non-standard base
pairs will improve consensus structure-prediction and structure-
dependent RNA gene finding.

Since many additional interactions beyond the standard base pairs
are represented in the LW formalism, what was considered to be a
loop in classical secondary structures can now appear as complex
structures of non-standard base pairs. These non-standard base pairs
effectively divide the long ‘classical’ loops into much shorter ones.
Parisien and Major (2008) proposed a model that contains loops
with no more than four unpaired bases. For unbranched structures,
the model is scored using a statistical potential estimated from
the available 3D structures by counting the relative frequencies
of base pairs, short unbranched loops of particular shapes in
dependence of their sequences and combinations of loops with a
common base pair. An accompanying folding procedure, MC-Fold
(Parisien and Major, 2008), which exhaustively enumerates stem-
loop components, is available and has been used very successfully
as a first step toward the de novo prediction of RNA 3D structures
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Fig. 2. MC-Fold and MC-Fold-DP both consider small loops, like the
hairpin AAGUG (C ) and the 2×2 stack AAGU (D ) (read clockwise, starting
bottom left). Each loop is scored by a function Ec(C |AAGUG). The stack (D )
follows analoguously. The interaction term between two loops is calculated as
indicated by the arrow (α), where the two loops are overlayed at the common
AG pair. The contribution of the interaction is Ejunction+hinge(C ,D;θ;A,G)
with θ the unknown pair family.

using MC-Sym (Parisien and Major, 2008), which takes as input the
proposed secondary structure from MC-Fold.

2 MC-FOLD REVISITED

2.1 Algorithm
Like ordinary secondary structure prediction tools, MC-Fold
(Parisien and Major, 2008) is based on a decomposition of the
RNA structure into ‘loops’. In contrast to the standard energy model,
however, it considers the full set of base pair types available in the
LW representation. Each base pair, therefore, corresponds to a triple
(i,j;θ) where θ is one of the 12 types of pairs. In this model, ordinary
secondary structures are the subset of pairs with Watson-Crick—
Watson-Crick type (θ= ‘WW’) and the two nucleotides form one of
the six canonical combinations {AU,UA,CG,GC,GU,UG}. This
extension of the structure model also calls for a more sophisticated
energy model. While the standard model assumes the contributions
of the loops to be strictly additive, MC-Fold also considers
interactions between adjacent unbranched loops (hairpins, stacked
pairs, bulges and general interior loops). This means that the total
energy of a structure is not only dependent on the loop types present,
but also on the arrangement of these loops. Dispensing with details
of the parametrization, the scoring function of MC-Fold for a
structure S on sequence x can be written as follows (see Fig. 2):

E(S|x)=
∑
C

Ec(C |x[C ])

+
∑

C ′ ,C ′′
(k,l)=C ′∩C ′′

Ej+h(C ′,C ′′;θ;x[k],x[l]) (2.1)

where C ,C ′,C ′′ are different loops of S. The additive term Ec
tabulates the (sequence-dependent) contributions of the loops. The
interaction term Ej+h accounts for the ‘junction’ and ‘hinge’ terms
in stem–loop regions. These interaction terms depend on the type of
the adjacent loops as well as on the type θ and sequence (x[k],x[l])
of the base pair that connects them. For multiloops, only the additive
term is considered.

Let us ignore multiloops for the moment. A basepair (i,j;θ) then
encloses a loop of type L which is either a hairpin or encloses a loop
K . It is connected to K by a base pair (k,l;ψ) with i<k< l< j. Let

Bij(θ;L ) be the minimal energy of a structure on x[i..j] enclosed
by a base pair (i,j;θ) with an outermost loop of type L . Note that,
in our notation, the loop type L also specifies its length and hence
implicitly determines the coordinates of the inner base pair of an
interior loop: (k,l)= (i+�1(L ),j−�2(L )). For simplicity, we write
(k(L ),l(L )). If L is a hairpin, then Bij(θ;L )=H [i,j;θ;hairpin],
a tabulated energy parameter. Otherwise, we have the recursion

Bij(θ;L )= min
ψ,K

(
I[i,j;θ;L ;ψ,K ]+Bk(L ),l(L )(ψ;K )

)
(2.2)

This can be expanded to a full ‘next-nearest-neighbor’ model by
enforcing an explicit dependence on the type of the inner base pair:

Bij(θ;L ;ψ)= min
ψ,K ,φ

(
I[i,j;θ;L ;ψ;K ;φ]

+Bk(L ),l(L )(ψ;K ;φ)

) (2.3)

The effort to evaluate this recursion equation for a fixed base pair
(i,j) is L3T3, where L is the number of loop types and T is the
number of base pair types. While this prefactor is inconveniently
large, we nevertheless obtain an O(n2) [or O(n3) with multibranched
loops] folding algorithm instead of the exponential runtime of
MC-Fold.

The problem with this general form of energy parametrization is
the unmanageable number of parameters that need to be measured,
estimated or learned from a rather limited set of experiments and
known RNA structures.

2.2 Parametrization and implementation
Since the folding problem for the MC-Fold model can be solved
in polynomial time, the associated parameter estimation problem
becomes amenable to advanced parameter optimization techniques
(Andronescu et al., 2007; Do et al., 2008). At present, however,
we have opted to extend the original MC-Fold parameters only
by simple sparse data corrections that can be applied on top of the
original MC-Fold database. This has the advantage of allowing
a direct comparison between the original version of MC-Fold
and our dynamic programming version MC-Fold-DP. In contrast
to the original version, MC-Fold-DP can cope with large data
sets and long sequences (3 s for 250 nt, about 24 s for 500 nt with
MC-Fold-DP, compared to 660 s for 100 nt with MC-Fold).1

In terms of algorithmic design, we have made several changes.
The grammar underlying MC-Fold-DP follows the ideas of
Wuchty et al. (1999). This makes the generation of all suboptimal
structures in an energy band above the ground state possible.
The decomposition of interior loops into small loops implies that
MC-Fold-DP runs in O(n3) time without the need for the usual
explicit truncation of long interior loops. The recursion that fills
stem loops [Nucleotide Cyclic Motifs (NCMs) in the nomenclature
of Parisien and Major (2008)] is now reduced to a function
NCM(i,j,typei,j,k,l,typek,l). For the matrix, entry (i,j,typei,j) is
minimized over all (k,l,typek,l) with (k,l) determined by the
newly inserted motif typei,j . Hairpins are even simpler: they follow
NCM(i,j,typei,j,...) but there is no inner part (k,l,typek,l).

1Note that the implementation of MC-Fold-DP has not been aggressively
optimized apart from using the polynomial-time algorithm.
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The total number of motif types is small (15 in the original
set, of which not all are actually used). Both the time and space
complexities are, therefore, small enough to handle RNAs with
a length of several hundred nucleotides, i.e. in the range that is
typically of interest. In fact, the time complexity is similar to
ordinary secondary structure prediction where interior loop size is
bounded by a constant. Since the grammar is unambiguous, it is
also straightforward to compute partition functions and base pairing
probabilities, although this feature is not available in the current
implementation.

3 BEYOND 1-DIAGRAMS

3.1 Base triplets
An important restriction of secondary structures is that each
nucleotide interacts with at most one partner. In combinatorial
terms, secondary structures are 1-diagrams. A closer analysis of the
available 3D structures, however, reveals that many nucleotides form
specific base pairs with two other nucleotides, forming ‘base triplets’
or, more generally, ‘multi-pairings’. Cross-free b-diagrams with
maximal number b of interaction partners for each nucleotide can
be treated combinatorically in complete analogy with (pseudoknot-
free) secondary structures by conceptually splitting each node into
as many vertices as there are incident base pairs (arcs). As in
the case of secondary structures, we say that (i,j) and (k,l) cross
if i<k< j< l or k< i< l< j. A b-diagram is non-crossing if no
two arcs cross. Base pairs can then be well-ordered also in this
extended setting: two distinct arcs (i,j) �= (k,l) are either nested
(i≤k< l≤ j) or juxtaposed (i< j≤k< l). This observation is used
in RNAMotifScan (Zhong et al., 2010) to devise a dynamic
programming algorithm for sequence structure alignments along the
lines of RNAscf (Bafna et al., 2006) or locarna (Will et al.,
2007), which in turn are restricted variants of the Sankoff algorithm
(Sankoff, 1985).

Here, we consider only structures with at most two base pairs
involving the same nucleotide, i.e. 2-diagrams. In this case, there
is a convenient string representation generalizing the Vienna (dot-
parentheses) notation for secondary structures by introducing three
additional symbols <, >, X for positions in which two arcs meet:
(( = <, )) = > and )( = X. For general b, the number of necessary
symbols grows quadratically, sb = (b+1)(b+2)/2, since each must
encode b1 opening and b2 closing pairs with b1,b2 ≥0 and b1 +b2 ≤
b. These symbols provide a direct representation of the arc nodes
‘�,�,×’of Figure 3 and are an optional output of the folding program
described below to visualize 2-diagrams in the secondary structure.

3.2 A grammar with base triplets
In order to design a dynamic programming folding algorithm for
cross-free 2-structures we need a decomposition, i.e. a grammar for
2-structures. For practical applications, it is desirable to have not
only a minimization algorithm, but also a partition function version.
To this end, an unambiguous grammar is required (Dowell and Eddy,
2004; Reeder et al., 2005). A simple version, treating base pairs as
the elementary entities is shown in Figure 3. It translates into an
extension of either a Nussinov-style algorithm for maximizing the
number of base pairs or a recursion for counting the number of
non-crossing 2-diagrams. Let Fij denote the minimum energy of a

structure on the sequence interval x[i..j]. We have

Fij =min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fi+1,j

Cij

εai,j +Ui,j−1

εbi,j +Vi+1,j

εci,j +Wi,j

min
i<k<j

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ci,k +Fk+1,j

εai,k +Ui,k−1 +Fk+1,j

εbi,k +Vi+1,k +Fk+1,j

εci,k +Wi,k +Fk+1,j

εai,k +Fi+1,k−1 +Uk,j

εci,k +Ui,k−1 +Uk,j

(3.1)

and analogous recursion for Uij ,Vij and Wij , denoting the minimum
energies over all structures whose left, right or both ends, are
involved in a triplet. The symbol Cij refers to structures enclosed
by a non-triplet base pair. In the simplest case, Cij =εij +Fi+1,j−1
(lower right corner of Fig. 3). The terminal symbols are the unpaired
base •, the ordinary base pairs and the three types of base pairs
involved in triplets, contributing εi =0 sequence-dependent energy
increment εij and sequence-dependent energy increments εaij , ε

b
ij and

εcij , respectively. The recursion is initialized with Fii =0.
Only certain combinations of types of base pairs can occur in

triplets. Thus, in a refined model we need to replace Uij , Vij and
Wij by Uij[ν], Uij[µ] and Wij[ξ] explicitly referring to the base
pair type(s) of the triplet. Furthermore, the energy parameters also
become type dependent εaij →εaij[ρ] or even εaij[ρ,ν] where ρ is the
type of the pair itself and ν is type of the second pair of the triplet.
The first variant is chosen for Nussinov-like algorithms, where each
individual base pair is evaluated, splitting triplets, and the second
variant is more fitting for Turner-like nearest neighbor models. In
that case, recursion on W changes to Wij[ν,µ] to reflect the pairing
choice being made.

3.3 Full loop-based model
The grammar of Figure 3 can be extended to incorporate the
standard loop-based Turner energy model (Turner and Mathews,
2010) (which distinguishes hairpin loops, stacks of two base pairs,
bulges, interior loops and multibranched loops). The modification of
the grammar is tedious but rather straightforward, as seen in Figure 4.
Instead of treating the base pairs themselves as terminal symbols (as
in Fig. 3), this role is taken over by entire loops. Note that as in the
case of ordinary secondary structures, each loop in a given structure
is uniquely determined by its closing pair. The energy contributions
now depend, in a more complex way, on the characteristics of
the loop, hence we also need additional non-terminals to describe
e.g. the components of multiloops.

We use a decomposition that is similar to that of MC-Fold and
in addition encompasses 2-diagrams. A p×q-loop, p≤q, consists
of p nucleotides on one strand and q nucleotides on the other
one. In particular, 2×2-loops correspond to stacked base pairs,
1×q-loops, q>1 are triplets and 2×3-loops are stacks with a
bulged-out nucleotide. In addition to hairpin loops and these p×q-
loops, we consider generic bulges with and without a shared
nucleotide, interior loops of larger sizes and multibranched loops,
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Fig. 3. A simple unambiguous grammar for non-crossing 2-diagrams (The symbols used here denote (non-)terminals in a context-free grammar and are
not to be confused with the LW notation used in other figures). Connected parts of diagrams correspond to terminal [individual bullet with no arc (closed
circle) = unpaired nucleotide; arc with circular end points (closed circle, open circle) = base pair; arc with triangular endpoints (left-faced triangle, right faced
triangle, cross) = part of base triple] or non-terminal (horizontal lines and semicircle) symbols of the grammar. It is important to realize that left-faced and
right-faced triangles refer to the same nucleotide when they are adjacent. In terms of a recursion, the index for both left-faced and right-faced triangles is
therefore the same. One triangle ‘points’ to the outer arc and one to the inner arc incident to the same nucleotide.

Fig. 4. Decomposition of one non-terminal in the full loop-based model with
triples. The l.h.s. of the production rule denotes a structure enclosed by a base
pair where the base at the 3′ end is part of a triple. The second base pair of
this triple ends within the structure. The structural element is either bulge
like (first column) or multiloop like. In the first case, we have to distinguish
whether the enclosed structure has a normal pair or a triple at its 5′ side. In the
multiloop case, we use the linear decomposition into components familiar
from the Turner model with a non-terminal denoting a partial multiloop
containing at least one base pair. Here, we need to distinguish whether the 5′
end of the rightmost component and 3′end of the left components are triples
or not. As the multiloop part is not implemented in our current version, it is
grayed out.

again possibly with shared nucleotides. Figure 4 gives an example
for the full loop-based decomposition of one particular non-terminal.
In our current implementation, we use several simplifications in
particular for multiloops that involve triplets. Some information on
the complete grammar used in our implementation can be found in
the Appendix A, other information is available on the RNAwolf
homepage.

4 IMPLEMENTATION

4.1 Folding software
The implementation available on the RNAwolf homepage is written in the
high-level functional programming language Haskell. While this leads to an
increase in running times (by a constant factor), the high-level notation and
a library of special functions lead to very concise programs, and enable, e.g.
the use of multiple cores.

Currently, the following algorithms are implemented: (i) an optimizer
which takes a set of melting experiments and the PDB database as input

and produces a parameter file optimized as described below. (ii) A folding
program which expects a sequence of nucleotides as input and produces an
extended secondary structure prediction which includes nucleotide pairs of
non-canonical types. Furthermore, it can contain motifs with base triplets.
(iii) An evaluation program which expects both, a sequence and a secondary
structure. The input is then evaluated to return the score of said structure
and, if requested, tries to fill the given (canonical) structure with additional
pairs. This allows to turn a classical secondary structure into an extended
secondary structure by filling large loops with non-canonical pairs.

At the moment, base triplets have been restricted slightly in that shared
nucleotides are only possible in stem structures, not within a multibranched
loop motif. Allowing shared nucleotides between two helices of a multiloop
would slow down multiloops by a significant factor. Nevertheless, we will lift
this restriction for the full nearest neighbor model we plan to implement. In
the full model, we will be able to use data gathered from our current model to
reduce the combinatorial complexity of the algorithm within multibranched
loops.

4.2 Parameter estimation
In contrast to the Turner model, which considers only canonical base pairs
[i.e. Watson–Crick and GU (wobble) pairs], we include all types of base pairs.
Thus, we also have to derive parameters for all possible base pair families
in our motifs of choice. To this end, we need to find sufficient evidence for
each parameter and we need an efficient numerical algorithm for optimizing
the parameters.

(i) Even if a large body of sequence/structure pairs is available to train
the parameters, it is still highly unlikely that each parameter is witnessed. A
simple calculation for canonical stacked pairs already produces 44 ×122 =
36864 (ignoring symmetries) parameters to be trained. While symmetries
reduce the number of distinct parameters, canonical stacks still require
∼10000 independent parameters. In total, the number of parameters easily
reaches 105, which means that only a very small set of parameters will
actually be observed in experimentally verified structures.

(ii) The second problem is of numerical nature in that it gets hard to
estimate a solution in R

100000 even under ideal circumstances. In addition,
the computational effort for the computation of the solution vector is rather
high. There are two different types of approaches to this problem, described
in some detail by Andronescu et al. (2007). In max-margin formulations,
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parameters are optimized such as to drive them away from wrongly
determined structures and toward correctly determined ones. Alternatively,
the conditional likelihood of known structures is maximized. Andronescu
et al. (2010) described an extension of the algorithm that can deal with
unobserved configurations by employing a hierarchical statistical model.

We have selected yet another way of dealing with the immense number
of features. Instead of optimizing the full set of parameters directly, we first
optimize the parameters for a restricted model closely following the simple
unambiguous grammar given in Figure 3. In short a loop of type m (e.g.
stacked pair, bulge, etc.) enclosed by two pairs p1, p2 is assigned an energy
ε(m)+εm(p1)+εm(p2), where ε(m) depends on the type and size of the loop
but is independent of sequence, and the pair energies depend on the identity
of the nucleotides as well as the LW type (e.g. GC,cWW).

We call our model enhanced Nussinov as it distinguishes between loops of
different types (say bulges of different lengths are assigned different scores)
but assumes that pair energies are independent as in the Nussinov model.

This approach has several advantages. First, the resulting algorithm is an
accessible ‘toy-model’ that can be employed to test different hypotheses.
Second, the estimated parameters provide a useful set of priors for the
full model. This is important since, in contrast to the work of Andronescu
et al. (2007), we cannot derive a complete set of priors from known data.
Finally, the computational requirements are significantly lower. Training a
full Boltzmann model for conditional likelihood maximization might easily
have taken months of CPU time (Andronescu et al., 2010).

Here, we utilize both melting experiments and PDB data for parameter
estimation. Melting experiments yield a small set of sequences, structures
and corresponding free energies. The structural data, unfortunately, provides
almost exclusively canonical Turner features and no information regarding
the base pair family, although it can be assumed that all pairs are of the
Watson–Crick (cWW) style. The PDB data, on the other hand, contain not
only non-canonical base pairs, but also provide information on the base pair
family. In addition, PDB entries typically refer to structures that are much
larger than those used in melting experiments.

Together, both sets provide data required for the estimation of an extended
set of parameters. In order to keep computation times short, we employ the
original no-max-margin constraint-generation approach used by Andronescu
et al. (2007). While not providing the most accurate parameters in the
original paper, the relatively short runtimes of ∼1 CPU day are convenient
for experimental purposes. In addition, since we are training an enhanced
Nussinov-style model, we can assume that the prediction accuracy is limited
by the structure of the model. More advanced, and hence computationally
more expensive, training methods are therefore unlikely to lead to substantial
improvements of the prediction accuracy.

4.3 Optimization
Our task is to estimate the energy contributions xj for a given collection of
features j. In this context, a feature corresponds to a terminal symbol in our
grammar with a fixed underlying sequence, such as as GC/GC stacked pair or
a 1×3-loop with sequence (G—AUC) where GA is a Hoogsteen pair and GC
is a Watson–Crick pair. We are given the following types of data: (i) a matrix
A whose entries Ai,j encode how often feature j occurs in sequence/structure
pair i, and (ii) a vector y containing measured melting temperatures yi for
experiment i.

Constraints are now generated as follows. For each entry k of the PDB,
we extract the (extended) secondary structure features. This means that
neither pseudoknots nor intermolecular interactions (which require more
complicated grammars) are considered. The entry f T

j of the row vector f T

counts how often feature j is observed in the structure. Using the current
parameter values x (see below), the sequence of PDB entry k is folded and
the corresponding feature vector gT is constructed. If the predicted fold has a
lower free energy than the known structure, a new constraint (f −g)T x≤0 is
introduced. Note that f T x and gT x are, by construction, the free energies of
the known and the predicted structure evaluated with the current parameters
x. Since the true structure is expected to be the thermodynamic ground state,

its free energy must be smaller than that of any other structure. The constraint
matrix D contains all currently active constraints where Dk,. is the k-th active
constraint (in this notation Dk,. selects the k-th row, while D.,l would select
the l-th column).

Following Andronescu et al. (2007), we use a slack variable dk for
each constraint so that Dk,.x≤dk . This guarantees that the problem remains
feasible as otherwise conflicting constraints could reduce the feasible set for
x to the empty set. The slack variables dk are bounded from below by 0≤dk

because (f −g)T x≥0, with equality for cooptimal structures.
Norm minimization problems can drive individual variables xi to extreme

values. We, therefore, constrain the energy contribution of individual features
to |xi|<5 kcal/mol. A subset S of features that act as penalties are constrained
to positive values, xj>0 for j∈S. The set S is defined along the following
principles: unpaired loop regions destabilize the structure relative to a random
coil and hence should be penalized. Hairpins, bulges and interior loops fall
into this category. In addition, 1×2 and 2×3 stems, which are otherwise
modeled as 2×2 stems, are penalized. Hence, for e.g. the 2×3 loop CAUGG
with A unpaired, we have ε(CG)+ε(UG)+ε(2×3) where ε(2×3) is the
penalty term.

Parameter estimation is thus reduced to the constrained norm optimization
problem ∥∥∥∥

(
A 0
D −I

)(
x
d

)
−

(
y
0

)∥∥∥∥
2

(4.1)

with the linear constraints

−5<xj<5, 0<xl, l∈S, 0<dk . (4.2)

Since this optimization problem is convex it can be solved efficiently.
The parameter vector x is optimized iteratively. Initially, D is empty and

no slack variables d are used. After the first step, all PDB sequences have
been folded and those for which the predicted structure is different from the
known structure are included as a row in D as described above. The slack
variables are initialized as dk =Dk,.x+γ for each constraint k, where γ ∈R+
is a small constant. Iterations of the optimization procedure continue until
no more constraints have to be added.

The computational effort required, both to estimate the parameters and to
fold a single sequence, is higher than what is required for the Turner model.
The additional computational effort required by the folding algorithm is
mainly a result of the inclusion of the pair family information. In the case of
2-loops (stacks, bulges, interior loops), we incur an additional factor of 12
since each possible pair family has to be considered. More problematic are
multibranched loops in the case of shared nucleotides as now there are up to
12×11 possibilities to connect a shared nucleotide with its pairing partners.

4.4 Comparison with turner parameters
A comparison with the parameter sets by Turner (Turner and Mathews,
2010) shows that individual contributions are similar enough to make the
the ‘enhanced Nussinov’ model a useful prior in the parameter optimization
for the full model. Consider, for example, canonical 2×2 stacks, where one
pair is of type GC, cWW type and the other pair is of type XY, cWW,
with XY ∈{GC,CG,AU,UA,GU,UG} and cWW stands for cis/Watson–
Crick/Watson–Crick, the canonical pair type. In the Turner-2004 model,
energy contributions range from −1.5 to −3.4 kcal/mol, while the base-
pair contribution for the GC, cWW pair is −1.36 kcal/mol in the optimized
‘enhanced Nussinov’ model. Depending on the second pair, we observe
discrepancies of ≈0.5 when comparing the sum of individual pair energies
to the total stacking energy. This level of agreement is expected and suggests
that it makes sense in later iterations of parameter estimation to constrain
features to tighter intervals than the current setting of using the open interval
of ]−5,5[.

5 RESULTS AND DISCUSSION
MC-Fold-DP: MC-Fold-DP and the original MC-Fold by
(Parisien and Major, 2008) show comparable performance on a
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Table 1. Prediction accuracy of MC-Fold, MC-Fold-DP and
RNAfold 1.8.4 on a set of 347 sequences from the RNAstrand
database

Algorithm Count MCC F S PPV

MC-Fold, ≤50 nt 298 0.74 0.74 0.80 0.70
MC-Fold, ≤100 nt 37 0.54 0.54 0.66 0.46
MC-Fold, >100 nt 12 0.49 0.49 0.53 0.46

MC-Fold-DP, ≤50 nt 298 0.71 0.71 0.77 0.68
MC-Fold-DP, ≤100 nt 37 0.53 0.53 0.64 0.45
MC-Fold-DP, >100 nt 12 0.38 0.37 0.51 0.29

RNAfold, ≤50 nt 298 0.76 0.76 0.73 0.81
RNAfold, ≤100 nt 37 0.73 0.73 0.73 0.73
RNAfold, >100 nt 12 0.63 0.63 0.66 0.60

All sequences are <200 nt long. The longest sequence took just under an hour of
computation time using MC-Fold. MC-Fold-DP can compute the predicted structure
in ∼1 s (loading the MC-Fold motif database requires an additional 1–2 s). Prediction
quality has been measured on canonical base pairs only for comparison purposes. Note
the small number of sequences >100 nt. (MCC, Matthews correlation coefficient; F,
F-Measure; S, Sensitivity; PPV, Positive Predictive Value).

set of 347 sequences selected from the RNAstrand (Andronescu
et al., 2008) database. There are several differences between
the two algorithms. First, the runtime, where MC-Fold-DP is
about ×200−×1000 faster for biologically relevant sequences (i.e.
<1000 nt). Table 1 shows a small comparison of the prediction
accuracy given different measures. Second, we allow for sparse
data correction, which can be disabled by the user. And third, the
algorithm accepts non-canonical input (e.g. ‘N’ characters) and can
be configured to calculate approximate scores for motifs containing
such characters.

Differences in predictions are the result of internals of the orignial
algorithm that have remained unknown to us since they are not
described in full detail in Parisien and Major (2008).

It should be noted that our reformulation makes MC-Fold-DP
amenable for the parameter optimization approaches pioneered by
Andronescu et al. (2010) for which a polynomial-time prediction
algorithm is crucial. The non-ambiguous grammar allows even
the advanced, Boltzmann Likelihood-based, approaches to be
employed. This presents an opportunity for future research.

RNAwolf: we compared our enhanced Nussinov algorithm to
three state-of-the-art thermodynamic folding algorithms [RNAfold
(Hofacker et al., 1994), UNAfold (Markham and Zuker, 2008) and
RNAstructure (Reuter and Mathews, 2010)] to assess the prediction
quality of our model. We folded a subset of 550 randomly chosen
structures from RNAstrand (Andronescu et al., 2008) and compared
the F-measure of our results with those of the other programs. The
results in Figure 5A show that, not unexpectedly, the ‘enhanced
Nussinov’ algorithm cannot compete with state-of-the-art tools due
to its simplified energy model.

Interestingly, once we focused on data gathered from the PDB
database (Fig. 5B), the results showed a remarkable improvement.
This could suggest that the PDB structures used for training do not
sufficiently cover the RNA structure space and that additional RNAs
(for which only secondary structure information is available) should
be included in the training.
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Fig. 5. (A) Histogram of F-measures for different folding algorithms, given
550 random RNAstrand entries. (B) F-measures, given 155 PDB entries from
the RNAstrand, which are a subset of the 550 random RNAstrand entries.

Because of the large number of base pair types, the ‘enhanced
Nussinov-algorithm’, has to perform more work than classical
secondary structure prediction programs when filling the dynamic
programming matrices. This is reflected by rather high runtimes
(25 s for 100 nt, 110 s for 200 nt). However, the asymptotic time
complexity is still in O(n3).

A constrained folding variant of the ‘enhanced-Nussinov’
algorithm can be used, for example, to predict non-canonical base
pairs in large interior loops of structures. As an example, Figure 6,
shows that RNAwolf is able to correctly predict the non-canonical
base pairs in a situation where the canonical base pairs are already
given, i.e. where the input consists of both the sequence and a dot-
bracket string representing canonical Watson–Crick base pairs. Only
the zig-zag motif (upper part of the interior loop) was not predicted,
presumably due to the large penalty of +3.89 for each of the two
1×2 stacks.

Further results and a semi-automatic system for secondary
structure prediction comparison (SSPcompare) are available on
the RNAwolf homepage. Table 1 has been created using said
program.

6 CONCLUSION
Large experimentally verified RNA structures contain a sizable
number of non-canonical base pairs (Stombaugh et al., 2009).
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Extended RNA secondary structures

A B

Fig. 6. Prediction of non-canonical base pairs with RNAwolf. (A) Known
structure of PDB entry 1dul. (B) Constrained prediction (canonical base
pairs were given) of 1dul. Only the central part of the structure is shown.
The outer part of the stem contains only canonical base pairs and is not
shown.

However, only a few RNA folding programs predict non-canonical
pairs (Do et al., 2006; Parisien and Major, 2008). With the
exception of MC-Fold, the pair families are not explicitly taken
into account. Here, we have shown that the prediction of non-
canonical pairs together with the corresponding pair families and
their possible interactions in base triples is feasible by efficient
dynamic programming approaches. Although direct thermodynamic
measurements are not available to cover all aspects of such
an extended and refined model of RNA structures, meaningful
parameter sets can nevertheless be constructed. To this end, the
information of the thermodynamic measurements is combined with
a feature analysis of 3D structures using one of several approaches
to large-scale parameter optimization. The extended combinatorial
model, which in essence covers the LW representations of RNA
structures, allows a much more detailed modeling of the intrinsic
structures in particular of hairpins, interior loops and bulges.

We emphasize that our contribution does not yet provide a full-
fledged loop-based LW-style energy model. In essence, we still lack
an implementation for the full model of multiloops. As the example
of Figure 6 suggests, interactions of adjacent loops as in the MC-
Fold model may also be required to obtain satisfactory prediction
accuracies for practical applications. Due to the computational
cost, it will also make sense to investigate the trade-off between
further refinements of the model and speed-ups resulting from
additive approximations. Another facet that naturally should be
taken into account is coaxial stacking, in particular in the context
of multiloops (Tyagi and Mathews, 2007). We have demonstrated
here that the goal of an accurate, practically applicable folding
algorithm for LW structures is meaningful and reachable: the work
of Parisien and Major (2008) shows that major improvements of
prediction accuracy can be obtained by employing LW-based folding
algorithms.Although RNAwolf does not yet reach the desired levels
of accuracy, it allows us to explore the missing components of the
energy model in a systematic manner, and it demonstrates that this
can be achieved without leaving the realm of fast, efficient and exact

dynamic programming approaches. The next step, therefore, is a
toolkit for optimizing parameters in the full loop-based model.

An interesting possibility for further extensions of the model is
the explicit incorporation of recurring RNA structural motifs with
non-canonical pairs, such as Kink-Turns (Klein et al., 2001), into
the grammar and the energy model. This may be particularly useful
in those cases where motifs are not crossing-free and hence would
require a pseudoknot version of the folding algorithm. While the
inclusion of various types of pseudoknots is conceptually not more
difficult than for ordinary secondary structures, the parametrization
of such models will be even more plagued by the lack of training
data in the LW framework.

The folding algorithm introduced here, furthermore, sets the stage
for a complete suite of bioinformatics tools for LW structures.
Simple extension can cover the cofolding of two or more RNAs
along the lines of (Bernhart et al., 2006; Dimitrov and Zuker,
2004; Dirks et al., 2007). Consensus structures can be predicted
from given sequence alignments using the same recursions. As
in RNAalifold (Bernhart et al., 2008), it suffices to redefine
the energy parameters for alignment columns instead of individual
nucleotides. Instead of RIBOSUM-like scores as measures of
conservation (Klein and Eddy, 2003), one naturally would employ
the isostericity rules for the individual base pair types (Leontis
et al., 2002; Lescoute et al., 2005). Inverse folding algorithms
(Andronescu et al., 2004; Busch and Backofen, 2006; Hofacker
et al., 1994) design RNA sequences that fold into prescribed
structures by iteratively modifying and folding sequences to
optimize their fit to substructures of the target. This strategy can
immediately be generalized to LW structures; in fact, in essence
it suffices to replace secondary structure folding by LW style
folding. Combining the algorithmic ideas of this contribution with
the Sankoff-style alignment approach of Zhong et al. (2010) and
the progressive multiple alignment scheme of mlocarna (Will
et al., 2007) directly leads to an LW variant of structural alignment
algorithms.
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APPENDIX A

A PAIRFAMILY-AWARE GRAMMAR
Here, we discuss in some more detail how the base pair types
affect the grammar and, hence, the folding algorithm. We start from
Figure 3 and the corresponding recursion in Equation (3.1). Each
base pair is now colored by its LW family. In particular, therefore,
base pairs have type-dependent energy contributions εij[ϑ] for pairs
not involved in base triples and energy contributions depending on

the type of the pair and on the type of the incident pairs: εaij[ϑ,ψ]
if the 5′ nucleotide i is a triplet, εaij[ϑ,φ] if the 3′ nucleotide i is
a triplet and εcij[ϑ,ψ,φ] if both delimiting nucleotides are triplets.
Similarly, therefore, non-terminals delimited by triples must be
colored by the base pair type(s) to allow the evaluation of the energy
of the enclosing base pair. In the simplest case, as implemented in
RNAwolf, we may assume that εbij[θ,ψ] only depends on the pair
type θ for permitted combinations of pair types and is +∞ otherwise.
With explicit representation of the pair family types, Equation (3.1)
becomes

Fij =min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fi+1,j,Cij,U
′
ij,V

′
ij,W

′
ij

min
i<k<j

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cik +Fk+1,j

V ′
i+1,k +Fk+1,j

U ′
i,k−1 +Fk+1,j

W ′
ij +Fi+1,k

Fi+1,k−1 +min
θ,ψ

{
Ukj[ψ]+εaik[θ,ψ]}

min
θ,ψ,φ

{
Ui,k−1[ψ]+Uk,j,φ+εcik[θ,ψ,φ]}

Here, we use the abbreviations

U ′
ij =min

θ,ψ

(
Ui,j−1[θ]+εaij[θ,ψ]

)

V ′
ij =min

θ,ψ

(
Vi+1,j[θ]+εbij[θ,ψ]

)

W ′
ij =min

θ

(
Wi,j[ψ,φ]+εcij[θ,ψ,φ]

)
which are obtained by carrying out the optimization over the
combinations of base pairing types at all triples.

The non-terminal C, designating a structure enclosed by an
ordinary base pair remains unchanged since the minimization Cij =
Fi+1,j−1 +minθ εij[ϑ] can be carried out in the simplified energy
model. The triplet terms, however, are now conditioned on the pair
family at all nodes represented as triangles in Figure 3. For instance,
for a structure delimited by triplet vertices at both ends which are
not connected by a pair, we obtain a recursion of the form

W∗
ij [θ,ψ]= min

i<k<j

⎧⎪⎨
⎪⎩

Fi+1,k−1 +εaik[θ]+Uk+1,j[ψ]
minφFi+1,k−1 +εbik[θ,φ]+Wk+1,j[φ,ψ]
minφVi+1,k[φ]+εbik[θ,φ]+Vk+1,j[ψ]

and Wij[θ,ψ]=W∗
ij [θ,ψ] if θ �=ψ and

Wij[θ,θ]=min{W∗
ij [θ,θ],Fi+1,j−1 +εij[θ].

Similar recursions are obtained for the full loop-based model. For
instance, for the two interloop terms in Figure 4 we have to compute

V∗
ij [θ,ψ]= min

k,l,ψ

{
I[i,j,θ|k,lψ]+Vkl[ψ]
I′[i,j,θ|k,lψ]+minφWkl[ψ,φ,θ]

where the matrices V∗, V and W now refer to the non-terminal
symbols in Figure 4 and I[...] and I′[...] denote the tabulated
energy contributions for the two different types of interior loops with
3′-triplet. For more detail, we refer to the Supplementary Material
which we will make available together with the full loop-based
model on the RNAwolf homepage.
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